Introduction

Congratulations on choosing your Honda CRF motocross motorcycle.

When you own a Honda, you’re part of a worldwide family of satisfied customers-people who appreciate Honda’s reputation for building quality into every product.

Your CRF is a high performance racing motorcycle that utilizes the latest motocross technology and is intended for competition use in sanctioned, closed-course events by experienced riders only.

Be aware that motocross is a physically demanding sport that requires more than just a fine motorcycle. To do well, you must be excellent physical condition and be a skillful rider. For the best results, work diligently on your physical conditioning and practice frequently.

Before riding, take time to get acquainted with your CRF and how it works. To protect your investment, we urge you to take responsibility for keeping your CRF well maintained. Scheduled service is a must, of course. But it’s just as important to observe the break-in guidelines, and perform all the pre-ride and other periodic checks detailed in this manual.

You should also read the owner’s manual before you ride. It’s full of facts, instructions, safety information, and helpful tips. To make it easy to use, the manual contains a table of contents, a detailed list of topics at the beginning of each section, and an index at the back of the book.

As you read this manual, you will find information that is preceded by a NOTICE symbol. This information is intended to help you avoid damage to your Honda, other property, or the environment.

Unless you are mechanically qualified and have the proper tools, you should see your Honda dealer for the service and adjustment procedures discussed in this manual.

The official Honda Service Manual for your CRF is available (page 152). It is the same manual your dealer uses. If you plan to do any service on your CRF beyond the standard maintenance procedures in this manual, you will find the Service Manual a valuable reference.

If you have any questions, or if you ever need a special service or repairs, remember that your Honda dealer knows your CRF best and is dedicated to your complete satisfaction.

Please report any change of address or ownership to your Honda dealer so we will be able to contact you concerning important production information.

You may also want to visit our website at www.honda.com

Happy riding!
A Few Words About Safety

Your safety, and the safety of others, is very important. And operating this motorcycle safely is an important responsibility.

To help you make informed decisions about safety, this manual contains a section devoted to Motorcycle Safety, as well as a number of Safety Messages throughout the manual.

Safety Messages are preceded by a safety alert symbol ▲ and one of three signal words: DANGER, WARNING, or CAUTION.

These signal words mean:

▲ DANGER
You WILL be KILLED or SERIOUSLY HURT if you don’t follow instructions.

▲ WARNING
You CAN be KILLED or SERIOUSLY HURT if you don’t follow instructions.

▲ CAUTION
You CAN be HURT if you don’t follow instructions.

Of course, it is not practical or possible to warn you about all hazards associated with operating or maintaining a motorcycle. You must use your own good judgement.
Contents

MOTORCYCLE SAFETY
- Important Safety Precautions
- Accessories & Modifications
- Safety Labels

OPERATING CONTROLS
- Component Locations

BEFORE RIDING
- Are You Ready to Ride?
- Is Your Motorcycle Ready to Ride?
 - Pre-ride Inspection

BASIC OPERATING INSTRUCTIONS
- Safe Riding Precautions
- Starting & Stopping the Engine
- Break-in Guidelines

SERVICING YOUR HONDA
- Before You Service Your Honda
 - The Importance of Maintenance
 - Maintenance Safety
 - Important Safety Precautions
 - Maintenance Schedule
 - General Competition Maintenance
 - Before & After Competition Maintenance
 - Between Motos & Practice Maintenance
 - After Competition Maintenance

Service Preparations
- Component Locations
- Seat Removal
- Fuel Tank Removal
- Subframe Removal

Fluids & Filters
- Fuel System
- Engine Oil
- Transmission Oil
- Coolant
- Air Cleaner
- Crankcase Breather

Engine
- Throttle
- Engine Idle Speed
- Clutch System
- Hot Start Lever
- Spark Plug
- Valve Clearance
- Piston/Piston Rings/Piston Pin

Chassis
- Suspension
- Brakes
- Wheels
- Tires & Tubes
- Drive Chain
- Exhaust Pipe/Muffler
- Additional Maintenance Procedures
- Appearance Care

ADJUSTMENTS FOR COMPETITION
- Front Suspension Adjustments
- Rear Suspension Adjustments
- Suspension Adjustments for Track Conditions
- Suspension Adjustment Guidelines
- Carburetor Adjustments & Tuning Tips
- Chassis Adjustments
- Gearing
- Tire Selection for Track Conditions
- Personal Fit Adjustments

TIPS
- Transporting Your Motorcycle
- Storing Your Honda
- You & the Environment
- Troubleshooting

TECHNICAL INFORMATION
- Vehicle Identification
- Specifications
- Torque Specifications
- High Altitude Carburetor Adjustment
- Oxygenated Fuels
- Competition Logbook
- Optional Parts List
- Spare Parts & Equipment
- Wiring Diagram

CONSUMER INFORMATION
- Authorized Manuals
- Contacting Honda
- Your Honda Dealer
- The Honda Rider’s Club (USA only)

Table of Contents

INDEX

QUICK REFERENCE
This section presents some of the most important information and recommendations to help you ride your CRF safely. Please take a few moments to read these pages. This section also includes information about the location of safety labels on your CRF.

<table>
<thead>
<tr>
<th>Important Safety Information</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Important Safety Precautions</td>
<td>2</td>
</tr>
<tr>
<td>Accessories & Modifications</td>
<td>3</td>
</tr>
<tr>
<td>Safety Labels</td>
<td>4</td>
</tr>
</tbody>
</table>
Important Safety Information

Important Safety Precautions

Your CRF can provide many years of pleasure, if you take responsibility for your own safety and understand the challenges you can meet in competitive racing.

As an experienced rider, you know there is much you can do to protect yourself when you ride. The following are a few precautions we consider most important.

Never Carry a Passenger.
Your CRF is designed for one operator only. Carrying a passenger can cause an accident in which you and others can be hurt.

Wear Protective Gear.
Whether you’re practicing to improve your skills, or riding in competition, always wear an approved helmet, eye protection, and proper protective gear.

Take Time to Get to Know Your CRF.
Because every motorcycle is unique, take time to become thoroughly familiar with how this one operates and responds to your commands before placing your machine, and yourself, in competition.

Learn and Respect Your Limits.
Never ride beyond your personal abilities or faster than conditions warrant. Remember that alcohol, drugs, illness and fatigue can reduce your ability to perform well and ride safely.

Don’t Drink and Ride.
Alcohol and riding don’t mix. Even one drink can reduce your ability to respond to changing conditions, and your reaction time gets worse with every additional drink. So don’t drink and ride, and don’t let your friends drink and ride either.

Keep your Honda in Safe Condition.
Maintaining your CRF properly is critical to your safety. A loose bolt, for example, can cause a breakdown in which you can be seriously injured.
Accessories & Modifications

Installing non-Honda accessories, removing original equipment, or modifying your CRF in any way that would change its design or operation, could seriously impair your CRF’s handling, stability, and braking, making it unsafe to ride.

⚠️ WARNING

Improper accessories or modifications can cause a crash in which you can be seriously hurt or killed.

Follow all instructions in this owner’s manual regarding modifications and accessories.
Safety Labels

Read this label carefully and don’t remove it.

If the label comes off or becomes hard to read, contact your Honda dealer for replacement.
Read this section carefully before you ride. It presents the location of the basic controls on your CRF.

Component Locations ...6
Component Locations

- Clutch lever
- Hot start lever
- Front brake lever
- Engine stop button
- Throttle grip
- Fuel fill cap
- Choke knob
- Kickstarter
- Fuel valve
- Shift lever
- Rear brake pedal
Before each ride, you need to make sure you and your Honda are both ready to ride. To help get you prepared, this section discusses how to evaluate your riding readiness, and what items you should check on your CRF.

For information about suspension, carburetor, and other adjustment for competition, see page 93.
Before riding your CRF for the first time, we strongly recommend that you read this owner’s manual, make sure you understand the safety messages, and know how to operate the controls.

Before each ride, it’s also important to make sure you and your CRF are both ready to ride.

For information about suspension, carburetor, and other adjustments, see page 93.

Whether you’re preparing for competition or for practice, always make sure you are.

- In good physical and mental condition
- Free of alcohol and drugs
- Wearing an approved helmet, eye protection, and other appropriate riding gear

Although complete protection is not possible, wearing the proper gear can reduce the chance or severity of injury when you ride.

⚠️ WARNING

Not wearing a helmet increases the chance of serious injury or death in a crash.

Be sure you always wear a helmet, eye protection and other protective apparel when you ride.
Before Riding

Is Your Motorcycle Ready to Ride?

Competitive riding can be tough on a motorcycle, so it’s important to inspect your CRF and correct any problems you find before each ride. Check the following items (page numbers are at the right):

<table>
<thead>
<tr>
<th>Pre-ride Inspection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check the following before each ride:</td>
</tr>
<tr>
<td>• Engine oil level ... 37</td>
</tr>
<tr>
<td>• Transmission oil level 40</td>
</tr>
<tr>
<td>• Coolant for proper level 41</td>
</tr>
<tr>
<td>• Cooling system and hoses for condition 42</td>
</tr>
<tr>
<td>• Spark plug for proper heat range, carbon fouling and high tension cord terminal for looseness ... 54</td>
</tr>
<tr>
<td>• Air cleaner for condition and contamination ... 43</td>
</tr>
<tr>
<td>• Clutch lever adjustment and freeplay 49</td>
</tr>
<tr>
<td>• Hot start lever freeplay 53</td>
</tr>
<tr>
<td>• Steering head bearing and related parts for condition ... 89</td>
</tr>
<tr>
<td>• Carburetor throttle operation 47</td>
</tr>
<tr>
<td>• Tires for damage or improper inflation pressure ... 81</td>
</tr>
<tr>
<td>• Spokes for looseness .. 80</td>
</tr>
<tr>
<td>• Rim locks for looseness 80</td>
</tr>
<tr>
<td>• Front and rear suspension for proper operation ... 71, 72</td>
</tr>
<tr>
<td>• Front and rear brakes, check operation 76</td>
</tr>
<tr>
<td>• Drive chain for correct slack and adequate lubrication ... 83</td>
</tr>
<tr>
<td>• Drive chain guide, sliders and drive chain rollers for damage or wear ... 83</td>
</tr>
<tr>
<td>• Exhaust pipe/Muffler inspection, removal and installation .. 83</td>
</tr>
<tr>
<td>• Every possible part for looseness (such as cylinder head nuts, engine mounting bolts, axle nuts, handlebar holder bolts, fork triple clamp bolts, drive chain adjuster, drive chain guide, wire harness connectors, kickstarter mounting bolt) ... 140</td>
</tr>
</tbody>
</table>

⚠️ WARNING

Improperly maintaining this motorcycle or failing to correct a problem before riding can cause a crash in which you can be seriously hurt or killed.

Always perform a pre-ride inspection before every ride and correct any problems.
Basic Operating Instructions

This section gives basic information on how to start and stop your engine as well as break-in guidelines.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safe Riding Precautions</td>
<td>12</td>
</tr>
<tr>
<td>Starting & Stopping the Engine</td>
<td>13</td>
</tr>
<tr>
<td>Preparation</td>
<td>13</td>
</tr>
<tr>
<td>Starting Procedure</td>
<td>13</td>
</tr>
<tr>
<td>Flooded Engine</td>
<td>13</td>
</tr>
<tr>
<td>How to Stop the Engine</td>
<td>14</td>
</tr>
<tr>
<td>Break-in Guidelines</td>
<td>15</td>
</tr>
</tbody>
</table>
Basic Operating Instructions

Safe Riding Precautions

Before riding your CRF for the first time, please review the Important Safety Precaution beginning on page 2 and the previous section, titled Before Riding.

For your safety, avoid starting or operating the engine in an enclosed area such as a garage. Your CRF’s exhaust contains poisonous carbon monoxide gas which can collect rapidly in an enclosed area and cause illness or death.
Always follow the proper starting procedure described below.

Your CRF can be kickstarted with the transmission in gear by pulling in the clutch lever before operating the kickstarter.

Preparation

Make sure that the transmission is in neutral. Turn the fuel valve ON.

Starting Procedure

Always follow the proper starting procedure described as follow.

Check the engine oil, transmission oil and coolant levels before starting the engine (pages 37,40,41).

Cold Engine Starting

1. Turn the fuel valve (1) ON.
2. Shift the transmission into neutral.
3. If the temperature is 35°C (95°F) or below, pull the choke knob (2) fully out.
4. If the temperature is below 0°C (32°F), open the throttle two or three times. (The engine requires a richer mixture for starting in cold weather. When the throttle is so opened, the accelerator pump will feed extra fuel to the cylinder, thereby facilitating starting in cold weather.)
5. With the throttle closed, operate the kickstarter starting from the top of the kickstarter stroke, kick through to the bottom with a rapid, continuous motion. (Do not open the throttle. As the carburetor is equipped with an accelerator pump, excessive fuel will be charged into the engine, and the spark plug will be fouled if the throttle is opened and closed repeatedly. Excessive fuel in the engine makes kickstarting difficult.)
6. About a minute after the engine starts, push the choke knob back all the way to fully OFF. If idling is unstable, open the throttle slightly.

Warm Engine Starting

1. Turn the fuel valve ON.
2. Shift the transmission into neutral.
3. Pull the hot start lever (3) and kick-start the engine. (Do not open the throttle.)
4. As soon as the engine starts, release the hot start lever.

(1) fuel valve (2) choke knob

Starting the engine after a stall during riding or after a fall

1. Shift the transmission into neutral.
2. Pull the hot start lever and kick-start the engine. (Do not open the throttle.)
3. As soon as the engine starts, release the hot start lever.

Flooded Engine

If the engine fails to start after repeated attempts, it may be flooded with excess fuel. To clear a flooded engine:

1. Shift the transmission into neutral.
2. With the throttle fully opened, repeat kickstarter operation approximately 10 times very slowly to discharge excessive fuel from the engine.
3. Pull the hot start lever and kick-start the engine (Do not open the throttle.)
4. As soon as the engine starts, release the hot start lever.
Starting & Stopping the Engine

How to Stop the Engine

(1) throttle grip
(2) engine stop button

Normal Engine Stop
1. Shift the transmission into neutral.
2. Turn the fuel valve OFF.
3. Lightly open the throttle (1) 2 – 3 times, and then close it.
4. Depress and hold the engine stop button (2) until the engine stops completely.

Failure to close the fuel valve may cause the carburetor to overflow, result in hard starting.

Emergency Engine Stop
To stop the engine in an emergency, press the engine stop button.
Break-in Guidelines

Help assure your CRF’s future reliability and performance by paying extra attention to how you ride during the first operating day or 15 miles (25 km). During this period, avoid full-throttle starts and rapid acceleration.

This same procedure should be followed each time when:

- piston is replaced
- piston rings are replaced
- cylinder is replaced
- crankshaft or crank bearings are replaced
Keeping your CRF well maintained is absolutely essential to your safety. It's also a good way to protect your investment, get maximum performance, avoid breakdowns, and have more fun.

To help keep your CRF in good shape, this section includes a Maintenance Schedule for required servicing and step-by-step instructions for specific maintenance tasks. You'll also find important safety precautions, information on oils, and tips for keeping your Honda looking good.

An ICM (Ignition Control Module) system is used on this motorcycle; consequently, routine ignition timing adjustment is unnecessary. If you want to check the ignition timing, refer to the Honda Service Manual (page 152).
The Importance of Maintenance

Keeping your CRF well-maintained is absolutely essential to your safety. It’s also a good way to get maximum performance during each moto. Careful pre-ride inspections and good maintenance are especially important because your CRF is designed to be ridden in off-road competition.

Remember, proper maintenance is your responsibility. Be sure to inspect your CRF before each ride and follow the Maintenance Schedule in this section.

⚠️ WARNING

Improperly maintaining this motorcycle or failing to correct a problem before you ride can cause a crash in which you can be seriously hurt or killed.

Always follow the inspection and maintenance recommendations and schedules in this owner’s manual.
This section includes instructions on how to perform some important maintenance tasks. Some of the most important safety precautions follow. However, we cannot warn you of every conceivable hazard that can arise in performing maintenance. Only you can decide whether or not you should perform a given task.

WARNING

Failure to properly follow maintenance instructions and precautions can cause you to be seriously hurt or killed.

Always follow the procedures and precautions in this owner’s manual.

Important Safety Precautions

- Make sure the engine is off before you begin any maintenance or repairs. This will help eliminate several potential hazards:

 Carbon monoxide poisoning from engine exhaust. Be sure there is adequate ventilation whenever you operate the engine.

 Burns from hot motorcycle parts. Let the engine and exhaust system cool before touching.

 Injury from moving parts. Do not run the engine unless instructed to do so.

- Read the instructions before you begin, and make sure you have the tools and skills required.

- To help prevent the motorcycle from falling over, park it on a firm, level surface, using the optional work stand or a maintenance stand to provide support.

- To reduce the possibility of a fire or explosion, be careful when working around gasoline. Use only a non-flammable (high flash point) solvent such as kerosene—not gasoline—to clean parts. Keep cigarettes, sparks, and flames away from all fuel-related parts.

WARNING

Failure to properly follow maintenance instructions and precautions can cause you to be seriously hurt or killed.

Always follow the procedures and precautions in this owner’s manual.
To maintain the safety and reliability of your CRF, regular inspection and service is required as shown in the Maintenance Schedule that follows.

The Maintenance Schedule lists items that can be performed with basic mechanical skills and hand tools. Procedures for these items are provided in this manual.

The Maintenance Schedule also includes items that involve more extensive procedures and may require special training, tools, and equipment. Therefore, we recommend that you have your Honda dealer perform these tasks unless you have advanced mechanical skills and the required tools. Procedures for items in this schedule are provided in a service manual available for purchase from your dealer (page 154).

Service intervals in the maintenance schedule are expressed in terms of races and riding hours. To avoid overlooking required service, we urge you to develop a convenient way to record the number of races and/or hours you ride.

If you do not feel capable of performing a given task or need assistance, remember that your Honda dealer knows your CRF best and is fully equipped to maintain and repair it. If you decide to do your own maintenance, use only genuine Honda parts or their equivalents for repair or replacement to ensure the best quality and reliability.

Perform the pre-ride inspection (page 9) at each scheduled maintenance period.

Summary of Maintenance Schedule Notes and Procedures:

Notes:
1. Clean after every heat for dusty riding conditions.
2. Replace every 2 years. Replacement requires mechanical skill.
3. Replace after the first break-in ride.
4. Inspect after the first break-in ride.
5. Replace the transmission oil, if the clutch discs and plates are replaced.

Maintenance Procedures:
I: inspect and clean, adjust, lubricate, or replace, if necessary
C: clean
L: lubricate
R: replace
Maintenance Schedule

Perform the Pre-ride Inspection at each scheduled maintenance period.

I: Inspect and Clean, Adjust, Lubricate or Replace if necessary.
C: Clean.
L: Lubricate.
R: Replace.

<table>
<thead>
<tr>
<th>ITEMS</th>
<th>FREQUENCY</th>
<th>NOTE</th>
<th>Each race or about 2.5 hours</th>
<th>Every 3 races or about 7.5 hours</th>
<th>Every 6 races or about 15.0 hours</th>
<th>Every 9 races or about 22.5 hours</th>
<th>Every 12 races or about 30.0 hours</th>
<th>Ref. Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>THROTTLE OPERATION</td>
<td></td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>46</td>
</tr>
<tr>
<td>HOT START SYSTEM</td>
<td></td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>AIR FILTER</td>
<td>(NOTE 1)</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>43</td>
</tr>
<tr>
<td>CRANKCASE BREATHER</td>
<td></td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>SPARK PLUG</td>
<td></td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>54</td>
</tr>
<tr>
<td>RADIATOR COOLANT</td>
<td>(NOTE 2)</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41</td>
</tr>
<tr>
<td>VALVE CLEARANCE / DECOMPRESSOR SYSTEM</td>
<td>(NOTE 4)</td>
<td>I</td>
<td></td>
<td></td>
<td>R</td>
<td></td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>ENGINE OIL</td>
<td>(NOTE 3)</td>
<td>I</td>
<td></td>
<td></td>
<td>R</td>
<td></td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>ENGINE OIL FILTER</td>
<td>(NOTE 3)</td>
<td>R</td>
<td></td>
<td></td>
<td>R</td>
<td></td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>ENGINE IDLE SPEED</td>
<td></td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>48</td>
</tr>
<tr>
<td>PISTON AND PISTON RINGS</td>
<td></td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>63</td>
</tr>
<tr>
<td>PISTON PIN</td>
<td></td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>63</td>
</tr>
<tr>
<td>TRANSMISSION OIL</td>
<td>(NOTE 5)</td>
<td>I</td>
<td></td>
<td></td>
<td>R</td>
<td></td>
<td></td>
<td>39</td>
</tr>
<tr>
<td>COOLING SYSTEM</td>
<td></td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>42</td>
</tr>
<tr>
<td>DRIVE CHAIN</td>
<td></td>
<td>LL</td>
<td></td>
<td></td>
<td>R</td>
<td></td>
<td></td>
<td>83</td>
</tr>
<tr>
<td>DRIVE CHAIN SLIDER</td>
<td></td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>83</td>
</tr>
<tr>
<td>DRIVE CHAIN ROLLER</td>
<td></td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>84</td>
</tr>
<tr>
<td>DRIVE SPROCKET</td>
<td></td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>85</td>
</tr>
<tr>
<td>DRIVEN SPROCKET</td>
<td></td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>85</td>
</tr>
<tr>
<td>BRAKE FLUID</td>
<td>(NOTE 2)</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>77</td>
</tr>
<tr>
<td>BRAKE PADS WEAR</td>
<td></td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>79</td>
</tr>
<tr>
<td>BRAKE SYSTEM</td>
<td></td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>76</td>
</tr>
<tr>
<td>CLUTCH SYSTEM</td>
<td>(NOTE 5)</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>49</td>
</tr>
<tr>
<td>CONTROL CABLES</td>
<td></td>
<td>LL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>89</td>
</tr>
<tr>
<td>EXHAUST PIPE/MUFFLER</td>
<td></td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>86</td>
</tr>
<tr>
<td>SUSPENSION</td>
<td></td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>71</td>
</tr>
<tr>
<td>SWINGARM/SHOCK LINKAGE</td>
<td></td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25, 72</td>
</tr>
<tr>
<td>FORK OIL</td>
<td>FORK TUBE/SLIDER</td>
<td>(NOTE 3)</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>DAMPER</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>98</td>
</tr>
<tr>
<td>NUTS, BOLTS, FASTENERS</td>
<td></td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90</td>
</tr>
<tr>
<td>WHEELS/TIRES</td>
<td></td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>80, 81</td>
</tr>
<tr>
<td>STEERING HEAD BEARINGS</td>
<td></td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>89</td>
</tr>
</tbody>
</table>

This maintenance schedule is based upon average riding condition. Machine subjected to severe use require more frequent servicing.

NOTE:
1. Clean after every heat for dusty riding conditions.
2. Replace every 2 years. Replacement requires mechanical skill.
3. Replace after the first break-in ride.
4. Inspect after the first break-in ride.
5. Replace the transmission oil, if the clutch discs and plates are replaced.
General Competition Maintenance

Perform maintenance on firm, level ground using the optional workstand, or equivalent support.

When tightening bolts, nuts or screws, start with the larger diameter or inner fasteners, and tighten them to the specified torque using a crisscross pattern.

Use genuine Honda parts or their equivalent when servicing your CRF.

Clean parts in non-flammable (high flash point) cleaning solvent (such as kerosene) when disassembling. Lubricate any sliding surface, O-rings, and seals before reassembling. Grease parts by coating or filling where specified.

After any engine disassembly, always install new gaskets, O-rings, cotter pins, piston pin clips, snap rings, etc. when reassembling. After reassembly, check all parts for proper installation and operation.

All Pre-ride Inspection Items
Refer to Pre-ride Inspection page 9.
Servicing Your Honda

Spark Plug
Some non-resistor plugs may cause ignition problems. Refer to the recommendations elsewhere in this manual for specific types so you will be sure to use the proper reach and heat range. Replace periodically as specified in the Maintenance Schedule. (page 20).

Engine Oil and Filter
Drain and replace engine oil often to ensure the greatest service life of the piston, cylinder and crankshaft. Also replace engine oil filter often to ensure the greatest service life. Frequent changes will also assure consistent performance of power and response. (page 37).

Air Cleaner
Clean and oil your air cleaner regularly because the volume of air able to pass through it has a great effect on performance. Both engine performance and long term durability may be affected by an air cleaner that has deteriorated and allows dirt to pass. Inspect the cleaner closely each time it’s serviced for evidence of small tears or seam separation. Keep a spare air cleaner oiled and ready to install, sealed in a plastic bag. Riding in dusty conditions may require servicing the air cleaner or replacing it with a pre-serviced air cleaner between motos. Be careful not to overoil the air cleaner. While it is important to oil the air cleaner thoroughly, over oiling will cause an overall rich running condition, probably more noticeable off idle and in low rpm performance. Follow the servicing instructions in the Maintenance section. Use Pro Honda Foam Filter Oil or an equivalent. Be sure to grease the air cleaner flange where it contacts the air cleaner housing. Honda White Lithium Grease, or an equivalent, is handy for this because any dirt that penetrates this sealing area will show up clearly (page 43).

Use the Honda genuine air cleaner or an equivalent air cleaner specified for your model. Using the wrong Honda air cleaner or a non-Honda air cleaner which is not of equivalent quality may cause premature engine wear or performance problems.

Transmission Oil
Drain and replace transmission oil often to ensure the greatest service life of the transmission and clutch. Frequent changes will also assure consistent performance of both shifting and clutch action (page 39).

Airbox Sealing
Remove and reseal the air cleaner housing boot where it connects to the air cleaner housing with silicone sealer if there is any doubt to its sealing integrity. Use Hondalock or an equivalent on the attaching studs. Inspect the air cleaner and air intake tract regularly for signs of deterioration or dirt penetration.
General Competition Maintenance

Handgrips
Always use Honda Hand Grip Cement (U.S.A only) or Honda Bond A when replacing handgrips.

Throttle Grip
Align the index mark on the throttle grip with the edge of the throttle cable guide. Left handlebar grip: Align the “∆” mark on the left handlebar grip with the punch mark on the handlebar. Refer to the Service Manual for installation instructions.

For added security, you may choose to safety wire the hand grips to the handlebar and throttle to prevent the possibility of them loosening. Position the twisted wire ends away from your palms and be sure to bend the wire ends well into the grip rubber so they will not snag your glove.

Cylinder Removal
Put a little grease on the cylinder mounting dowels to prevent corrosion from dissimilar metals. The tolerances are quite tight, so it’s important to keep these dowels absolutely clean (page 65).

Gaskets
Always use new gaskets when reassembling components.

Fuel Filter
Periodically drain the fuel from the tank, remove and clean the fuel valve/filter. Replace the fuel valve O-ring if there are any signs of damage or deterioration (page 35).

Fuel Contamination
Refer to Fuel System in your Owner’s Manual, page 34, and, in this supplement, Fuel System, page 34. Check the fuel lines for deterioration, damage, or leakage. Replace the fuel lines, if necessary. Periodically drain the fuel from the tank, remove and clean the fuel valve and fuel strainer screen. Replace the fuel valve O-ring if there are any signs of damage or deterioration (page 35). Loosen the exterior drain screw and examine the fuel that flows out of the float bowl. If you notice anything in the fuel, such as water or dirt, remove the float bowl and inspect its contents (page 117). For maximum efficiency, drain and replace fuel that has remained in your fuel tank for more than a month.

Electrical Connectors
Clean electrical connectors and wrap them with electrical tape to reduce the possibility of unwanted disconnections, water shorts or corrosion. Additional corrosion protection is offered by using Honda Dielectoric Grease on all electrical connections.

Engine Mounting Bolts
Make sure the engine mounting bolts are tightened to the proper torque specification. For added peace of mind, remove the nuts, clean the threads, and apply Honda Thread Lock or an equivalent prior to torquing the nuts.
General Competition Maintenance

Suspension Linkage Lubrication
Disassemble, clean, inspect and lubricate all pivot bearings after each 7.5 hours of running time in order to maintain proper suspension performance and minimize component wear. Use Honda Moly 60 paste (U.S.A. only) or molybdenum disulfide paste (containing more than 40% molybdenum disulfide additive).

Brake Fluid Replacement
Refer to Brake Pad Wear in your Owner’s Manual, page 79. Brake Caliper Inspection: Be sure both the front and rear calipers are able to move freely on the caliper bracket pins. Check pad thickness periodically and replace when minimum thickness is reached. If the brakes fade when they are hot, inspect the pads for glazing or damage, and replace if necessary. Brake Fluid Replacement: Replace the hydraulic fluid in the brake system every two years. Replace the fluid more frequently if you subject your brakes to severe use. Heavy braking heats the brake fluid and it may deteriorate sooner than expected. Any type of riding, that requires frequent use of the brakes, such as in tight woods, can shorten the service life of brake fluid.

Swingarm Pivot Lubrication
Clean, inspect and lubricate when servicing suspension linkage pivots. Be sure all of the suspension pivot seals are in good condition. Use Honda Moly 60 paste (U.S.A. only) or molybdenum disulfide paste (containing more than 40% molybdenum disulfide additive).

Swingarm
Do not attempt to weld or otherwise repair a damaged swingarm. Welding will weaken the swingarm.

Footpegs
Worn footpeg teeth can be repaired by filing the grooves between the teeth with a triangular shaped file. Be aware that filing them too sharp will reduce boot sole lifespan. Sharpen only the points of the teeth. Filing the grooves deeper will weaken the footpegs. Be sure the pegs are free to pivot freely and that the pivot pin retaining cotter pins are in good condition.

Water Pump Inspection Hole
After every race, check the inspection hole, located just below the water pump cover on the right crankcase cover. Clean away any clogged dirt or sand, if necessary. Look for coolant or oil leakage. Leaking coolant indicates a worn or damaged water seal. Leaking oil indicates a bad transmission oil seal. If replacement is necessary, both seals should be replaced.

Steering Head Bearings
Periodically clean, inspect and regrease the steering head bearings — especially if wet, muddy or extremely dusty courses are encountered often.

Fork Oil/Performance
Disassemble, clean and inspect the fork and replace the oil regularly. Contamination due to the tiny metal particles produced from the normal action of the fork, as well as normal oil breakdown, will deteriorate the performance of the suspension. Refer to the Honda Service Manual. Use only Pro Honda HP Fork Oil 5W (U.S.A. only) or equivalent which contains special additives to assure maximum performance of your CRF’s front suspension.

Frame
Because your CRF is a high-performance machine, the frame should not be overlooked as part of your overall competition maintenance program. Periodically inspect the frame closely for possible cracking or other damage. It makes good racing sense.

Spokes
Check spoke tension frequently between the first few rides. As the spokes, spoke nuts and rim contact points seat-in, the spokes may need to be retightened. Once past this initial seating-in period, the spokes should hold their tension. Still, be sure your race maintenance program includes checking spoke tension and overall wheel condition on a regular basis (page 80).

Nuts, Bolts, Etc
Application of a thread locking agent to essential fasteners offers added assurance and security. Remove the nuts, clean the threads of both the nuts and bolts, apply Honda Thread Lock or an equivalent and tighten to the specified torque.
Before & After Competition Maintenance

Between Motos & Practice Maintenance

After practice or between motos you have a chance to make additional checks and adjustments.

- Clean accumulated dirt from under the fenders and off the wheels, suspension components, hand grips, controls, and footpegs. A stiff, nylon parts cleaning brush works well.
- Check tire air pressure.
- Check spoke tension and rim lock nut security.

- Check sprocket bolt and nut security.
- Clean the sides of the drive chain with a stiff, nylon parts-cleaning brush. Lubricate and adjust the chain as necessary.

Do not perform maintenance while engine is running. Injury to your fingers or hands may result.

- After adjustment, check that the chain adjuster index marks (1) are in the same position on each side. This will ensure that the rear wheel is in proper alignment and allow maximum performance from the rear disc brake. Maintaining proper wheel alignment will also extend brake pad wear.

After Competition Maintenance

It is important to the long term performance of your CRF to practice a consistent maintenance program. Right after the event is a good time to begin your next maintenance cycle.

After Race Lubrication

Apply a light coating of rust-inhibiting oil to the drive sprocket and any steel portions of the chassis or engine where the paint has worn away. This will prevent rusting of the exposed metal. Apply rust-inhibiting oil more heavily if the event was particularly wet or muddy. Take care to avoid spraying any oil near the disc brakes or the disc rotors.

Remove the drive chain, clean it, and lubricate the chain and sprockets. Be sure the chain is wiped clean and is dry before applying the chain lube.

Take care to prevent catching your fingers between the chain and sprocket.
Routine Cleaning

If your CRF is only slightly dirty, it is best to clean it by hand with the aid of a stiff bristled nylon brush and some clean rags.

Take care to prevent catching your fingers between the chain and sprocket.

A variety of reasonably priced cleaning brushes are available from variety, drug, food, and hardware stores. Some of these brushes are extremely useful in removing dirt from the many tight contours of the metal pieces of your CRF. Avoid using stiff, abrasive brushes on the plastic or rubber parts.

If your CRF was exposed to sea air or salt water, rinse it as soon as possible after the event, dry it, and apply a spray lubricant to all metal parts.

If you decide to wash your motorcycle or use cleaners, refer to Appearance Care (page 91).
Component Locations

- Choke knob
- Air cleaner housing cover
- Rear suspension
- Air cleaner
- Chain slipper
- Rear wheel
- Axle
- Chain adjuster
- Drive chain
- Transmission oil drain bolt
- Engine oil drain bolt
- Engine stop button
- Fuel fill cap
- Radiator cap
- Throttle grip
- Clutch lever
- Hot start lever
- Front brake lever
- Carburetor
- Front brake hose
- Steering head
- Front suspension
- Fuel valve
- Kickstarter
- Throttle
- Front brake lever
- Spark plug
- Rear brake pedal
- Front wheel axle
Refer to *Safety Precautions* on page 19.

Removal
1. Remove the seat bolts (1) and collars (2).
2. Slide the seat (3) back.

Installation
1. Slide the seat front prong (4) onto the seat bracket (5) and the seat rear prong (6) onto the tab (7) by pushing down and forward on the seat in each of these areas.
2. Install the collars and tighten the seat bolts.
 19 lbf·ft (26 N·m, 2.7 kgf·m)
Fuel Tank Removal

Refer to Safety Precautions on page 19.

Removal
1. Turn the fuel valve (1) OFF.

6. Unhook and remove the fuel tank band (6).
7. Remove the fuel tank bolt (7).

5. Pull the breather tube (5) out of steering stem nut.

WARNING
Gasoline is highly flammable and explosive. You can be burned or seriously injured when handling fuel.

- Stop the engine and keep heat, sparks and flame away.
- Handle fuel only outdoors.
- Wipe up spills immediately.

8. Disconnect the fuel line (8) from the fuel valve. The fuel line leading to the carburetor must be disconnected, not the fuel line leading to the fuel tank.
9. Remove the fuel valve bolt (9) and fuel valve.
10. Remove the fuel tank.

2. Remove the seat (page 29).
3. Remove the shroud A bolts (2).
4. Remove the shroud B bolts/collars (3) and shrouds (4).

(1) fuel valve

(2) shroud A bolts
(3) shroud B bolts/collars
(4) shrouds

(5) breather tube
(6) fuel tank band
(7) fuel tank bolt

(8) fuel line
(9) fuel valve bolt
Installation
1. Install the fuel tank on the frame.
2. Install the fuel valve (1) and fuel valve bolt (2).
3. Connect the fuel line (3) to the fuel valve.
4. Install the fuel tank bolt (4).
5. Hook the air cleaner cover rubber (5).
6. Install the fuel tank band (6).
7. Put the breather tube (7) in the steering stem nut.
8. Install the shrouds (8) and shroud B bolts/collars (9).
9. Install the shroud A bolts (10).
10. Install the seat (page 29).
Subframe Removal

Refer to Safety Precautions on page 19.

Removal
1. Remove the seat (page 29).
2. Remove the side covers (1) by removing the bolts/collars (2).

3. Loosen the muffler clamp bolt (3).
4. Remove the muffler A bolt (4), muffler B bolt/washer (5) and muffler (6).

5. Disconnect the crankcase breather tube (7).
6. Unhook the fuel tank band (8), and remove it.
7. Unhook the air cleaner cover rubber (9).
8. Loosen the screw (10) on the air cleaner connecting tube clamp (11).

9. Remove the subframe mounting A bolts (12) and subframe mounting B bolt (13). Then remove the subframe (14) by pulling it straight backward.

Installation
1. Loosely attach the upper and lower ends of the subframe (1) to the mainframe while connecting the air cleaner connecting tube to the carburetor. Then align the subframe with the rear wheel and tighten the subframe mounting B bolt (2) and subframe mounting A bolts (3) to the specified torque:
 - B bolt: 22 lbf·ft (30 N·m, 3.1 kgf·m)
 - A bolt: 36 lbf·ft (49 N·m, 5.0 kgf·m)
Subframe Removal

2. Tighten the screw (4) on the air cleaner connecting tube clamp (5).
3. Hook the air cleaner cover rubber (6).
4. Install and hook the fuel tank band (7).
5. Connect the crankcase breather tube (8).

6. Remove the old gasket from exhaust pipe.
7. Install the muffler clamp (9) by aligning the tab (10) of the muffler clamp with the cut-out (11) of the muffler (12).

8. Install the new gasket (13) as shown.

9. Install the muffler (12).
10. Tighten the muffler B bolt/washer (14) and muffler A bolt (15) to the specified torque: 19 lbf-ft (26 N·m, 2.7 kgf·m)

11. Tighten the muffler clamp bolt (16) to the specified torque: 15 lbf-ft (21 N·m, 2.1 kgf·m)

12. Install the side covers (17), side cover bolts and collars (18).
13. Install the seat (page 29).
Fuel System

Refer to Safety Precautions on page 19.

Fuel Recommendation

<table>
<thead>
<tr>
<th>Type</th>
<th>Unleaded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump Octane Number</td>
<td>91 (or higher)</td>
</tr>
</tbody>
</table>

We recommend that you use unleaded fuel because it produces fewer engine deposits and extends the life of exhaust system components.

Your engine is designed to use any gasoline that has a pump octane number of 91 or higher. Gasoline pumps at service stations normally display the pump octane number. For information on the use of oxygenated fuels, see page 144.

Use of lower octane gasoline can cause persistent “pinging” or “spark knock” (a louder rapping noise) which, if severe, can lead to engine damage. (Light pinging experienced while operating under a heavy load, such as climbing a hill, is no cause for concern.)

If pinging or spark knock occurs at a steady engine speed under normal load, change brands of gasoline. If pinging or spark knock persists, consult your Honda dealer.

Never use stale or contaminated gasoline. Avoid getting dirt, dust, or water in the fuel tank.

Refueling Procedure

Fuel Tank Capacity: 1.9 US gal (7.3 liter)

1. To open the fuel fill cap (1), pull the breather tube (2) out of the steering stem nut (3). Turn the fuel fill cap counterclockwise and remove it.
2. Add fuel until the level reaches the bottom of the filler neck. Avoid overfilling the tank. There should be no fuel in the filler neck.

WARNING

Gasoline is highly flammable and explosive. You can be burned or seriously injured when handling fuel.

- Stop the engine and keep heat, sparks and flame away.
- Handle fuel only outdoors.
- Wipe up spills immediately.

Fuel Valve and Hose

1. Check the fuel valve (1) and fuel filter (2) for contamination.
2. Check for leaks.
3. Check the fuel line (3) for cracks, deterioration, damage, or leakage. Replace the fuel line, if necessary.
4. Check for interference between the frame and tank and adjust if necessary.
Fuel Filter

The fuel filter is mounted on the bottom left side of the fuel tank. Dirt accumulated in the filter will restrict the flow of the fuel to the carburetor.

To service the fuel filter:
1. Drain the fuel from the fuel tank into an approved gasoline container.
2. Remove the fuel tank (page 30).
3. Remove the fuel filter (1) from fuel tank by removing the bolts (2). Wash the fuel filter in high flash-point cleaning solvent.
4. Reassemble the fuel filter in the reverse order of removal. Make sure the O-ring (3) is in place. Install the fuel filter in the fuel tank. Refill the fuel tank.
 Attach the fuel valve and fuel line, and turn the fuel valve to ON; check for leaks.
Engine Oil

Refer to *Safety Precautions* on page 19.

Using the proper oil, and regularly checking, adding, and changing oil will help extend the service life of the engine’s life. Even the best oil wears out. Changing oil helps get rid of dirt and deposits. Operating the engine with old or dirty oil can damage your engine. Running the engine with insufficient oil can cause serious damage to the engine.

<table>
<thead>
<tr>
<th>Oil Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>API classification</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>viscosity (weight)</th>
<th>SAE 10W–40</th>
</tr>
</thead>
<tbody>
<tr>
<td>JASO T 903</td>
<td>MA or MB</td>
</tr>
</tbody>
</table>

* Suggested 4-stroke engine oils are equal performance to SJ oils that are not labeled as energy conserving on the circular API service label.

- Your motorcycle does not need oil additives. Use the recommended oil.
- Do not use API SH or higher 4-stroke engine oils displaying a circular API “energy conserving” service label on the container. They may affect lubrication.

![Viscosity Chart](image)

Other viscosities shown in the following chart may be used when the average temperature in your riding area is within the indicated range.
JASO T 903 standard
The JASO T 903 standard is an index to choose engine oils for 4-stroke motorcycle engines. There are two classes: MA and MB. Oil conforming to the standard has the following classification on the oil container.

PRODUCT MEETING JASO T 903
COMPANY GUARANTEEING THIS MA PERFORMANCE:
(1) code number of the sales company of the oil
(2) oil classification

Checking & Adding Oil

1. Run the engine at idle for 3 minutes, then shut it off.
2. Wait 3 minutes after shutting off the engine to allow the oil to properly distribute itself in the engine.
3. Support the CRF in an upright position on a level surface.
4. Remove the engine oil filler cap/dipstick (1), wipe it clean, and insert the oil filler cap/dipstick without screwing it in, Remove the oil filler cap/dipstick.
5. Check that the oil level is between the upper (2) and lower (3) level marks on the oil filler cap/dipstick.
 • If the oil is at or near the upper level mark, you do not have to add oil.
 • If the oil is below or near the lower level mark and add the recommended oil until the upper level mark. (Do not overfill)
5. Reinstall the engine oil filler cap/dipstick.
6. Reinsert the engine oil filler cap/dipstick.
7. Check for oil leaks.

Changing Engine Oil & Filter

1. Run the engine at idle for 3 minutes, then shut it off.
2. Support the CRF in an upright position on a level surface.
3. Remove the engine oil filler cap/dipstick (1) from the left crankcase cover.
4. Place an oil drain pan under the engine to catch the oil. Then remove the engine oil drain bolt (2) and sealing washer (3).
5. With the engine stop button pushed, repeat kickstarter operation approximately 5 times to drain the engine oil completely.
6. After the oil has drained, tighten the engine oil drain bolt with a new sealing washer to the specified torque:
 16 lbf-ft (22 N·m, 2.2 kgf-m)
7. It is recommended to replace the oil and filter every 6 races or about every 15.0 hours. However, if you replace only the oil before the recommended interval, see page 21.

(cont’d)
Engine Oil

8. Remove the left engine guard bolt (4) and left engine guard (5).

9. Remove the oil filter cover bolts (6) and oil filter cover (7).

10. Remove the oil filter (8) from the cover.

11. Check that the oil filter cover O-ring (9) is in good condition.

12. Apply grease to the seat face of spring (10).

13. Position the spring against the engine crankcase and install a new oil filter with the rubber seal (11) facing out, away from the engine. You should see the "OUT-SIDE" mark (12) on the filter body, near the seal. Use a new genuine Honda oil filter or a filter of equal quality specified for your model.

NOTICE

If the oil filter is not installed properly, it will cause serious engine damage.

14. Install the oil filter cover O-ring and oil filter cover being careful not to damage the O-ring, then tighten the oil filter cover bolts to the specified torque:

9 lbf-ft (12 N·m, 1.2 kgf·m)

15. Install the left engine guard and left engine guard bolt.

16. Fill the crankcase with the recommended oil.

 Capacity: 0.73 US qt (0.69 l)
 at oil and filter change
 0.70 US qt (0.66 l)
 at oil change

17. Install the engine oil filler cap/dipstick.

18. Check the engine oil level by following the steps in *Checking & Adding oil* (page 37).
Refer to Safety Precautions on page 19.

Using the proper oil, and regularly checking, adding, and changing oil will help extend the service life of the transmission and clutch. Even the best oil wears out. Changing oil helps get rid of dirt and deposits. Operating the engine with old or dirty oil can damage your engine. Running the engine with insufficient oil can cause serious damage to the engine and transmission.

Oil Recommendation

<table>
<thead>
<tr>
<th>Type</th>
<th>transmission oil or 4-stroke engine oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>API classification (4-stroke engine oil only)</td>
<td>SG or higher except oils labeled as energy conserving on the circular API service label</td>
</tr>
<tr>
<td>Viscosity (weight)</td>
<td>SAE 10W–40</td>
</tr>
<tr>
<td>JASO T903 standard</td>
<td>MA</td>
</tr>
<tr>
<td>others</td>
<td>without friction modifiers as molybdenum additives</td>
</tr>
<tr>
<td>suggested oil*</td>
<td>Pro Honda HP Trans oil, Pro Honda GN4 or HP4 (without molybdenum additives) 4-stroke engine oil or an equivalent*</td>
</tr>
</tbody>
</table>

* Suggested 4-stroke engine oils are equal performance to SJ oils that are not labeled as energy conserving on the circular API service label.

- Your CRF does not need oil additives. Use the recommended oil.
- Do not use oils with graphite or molybdenum additives. They may adversely affect clutch operation.
- Do not use API SH or higher 4-stroke engine oils displaying a circular API “energy conserving” service label on the container. They may affect lubrication and clutch performance.

Transmission Oil

Other viscosities shown in the following chart may be used when the average temperature in your riding area is within the indicated range.

(continuation...)

Servicing Your Honda 39
Transmission Oil

JASO T 903 standard
The JASO T 903 standard is an index to choose engine oils for 4-stroke motorcycle engines. There are two classes: MA and MB. Oil conforming to the standard has the following classification on the oil container.

(1) code number of the sales company of the oil
(2) oil classification

PRODUCT MEETING JASO T 903
COMPANY GUARANTEEING THIS MA PERFORMANCE:

Checking & Adding Oil

1. Run the engine at idle for 3 minutes, then shut it off.
2. Wait 3 minutes after shutting off the engine to allow the oil to properly distribute itself in the clutch and transmission.
3. Support the CRF in an upright position on a level surface.
4. Remove the transmission oil filler cap (1) and oil check bolt (2) from the right crankcase cover. A small amount of oil should flow out of the oil check bolt hole. Allow any excess oil to flow out of the oil check bolt hole. If no oil flows out of the oil check bolt hole, add oil slowly through the transmission oil filler hole until oil start to flow out of the oil check bolt hole.
5. After inspection the oil level or adding oil, tighten the oil check bolt to the specified torque.
 Oil Check Bolt: 7 lbf·ft (10 N·m, 1.0 kgf·m)
6. Install the transmission oil filler cap securely.

Replacing Transmission Oil

1. Run the engine at idle for 3 minutes, then shut it off.
2. Support the CRF in an upright position on a level surface.
3. Remove the transmission oil filler cap (1) from the right crankcase cover.
4. Place an oil drain pan under the engine to catch the oil. Then remove the transmission oil drain bolt (2) and sealing washer (3).
5. After the oil has drained, install the transmission oil drain bolt with a new sealing washer to the specified torque:
 16 lbf·ft (22 N·m, 2.2 kgf·m)
6. Fill the crankcase with recommended oil.
 Capacity: 0.63 US qt (0.60 l) at oil change
7. Check the transmission oil level by following the steps in checking & Adding Oil (this page).
Your CRF’s liquid cooling system dissipates engine heat through the coolant jacket that surrounds the cylinder and cylinder head.

Maintaining the coolant will allow the cooling system to work properly and prevent freezing, overheating, and corrosion.

Coolant Recommendation

Use Pro Honda HP coolant or an equivalent high quality ethylene glycol antifreeze containing corrosion protection inhibitors specifically recommended for use in aluminum engines. Check the antifreeze container label.

Use only distilled water as a part of the coolant solution. Water that is high in mineral content or salt may be harmful to the aluminum engine.

NOTICE

Using coolant with silicate inhibitors may cause premature wear of radiator pump seals or blockage of radiator passages. Using tap water may cause engine damage.

The factory provides a 50/50 solution of antifreeze and water in this motorcycle. This coolant solution is recommended for most operating temperatures and provides good corrosion protection.

Decreasing the concentration of antifreeze to less than 40% will not provide proper corrosion protection.

Increasing the concentration of antifreeze is not recommended because it decreases cooling system performance. Higher concentrations of antifreeze (up to 60%) should only be used to provide additional protection against freezing. Check the cooling system frequently during freezing weather.

Checking & Adding Coolant

Refer to *Safety Precautions* on page 19.

1. With the engine cold, remove the radiator cap (1) and check coolant level. The coolant level is correct when it is at the bottom of the radiator filler neck.

2. Add coolant up to the filler neck if the level is low. Inspect the coolant level before each outing. A coolant loss of 0.7 - 2.0 US oz (20 - 60 cm³) through the overflow tube is normal. If coolant loss is more than this, inspect the cooling system.

3. Install the radiator cap securely.

WARNING

Removing the radiator cap while the engine is hot can allow the coolant to spray out, seriously scalding you.

Always let the engine and radiator cool down before removing the radiator cap.

2. Add coolant up to the filler neck if the level is low. Inspect the coolant level before each outing. A coolant loss of 0.7 - 2.0 US oz (20 - 60 cm³) through the overflow tube is normal. If coolant loss is more than this, inspect the cooling system.

3. Install the radiator cap securely.

NOTICE

If the radiator cap is not installed properly, it will cause excessive coolant loss and may result in overheating and engine damage.

Capacity:
- 1.06 US qt (1.00 ℓ) at disassembly
- 0.98 US qt (0.93 ℓ) at coolant change
Coolant

Cooling System Inspection

1. Check the cooling system for leaks (see the Honda Service Manual for troubleshooting of leaks).
2. Check water hoses (1) for cracks, deterioration, and clamp bands for looseness.
3. Check the radiator mount for looseness.
4. Make sure the overflow tube (2) is connected and not clogged.
5. Check the radiator fins for clogging.
6. Check the water leakage check hole (3) below the water pump cover (4) for leakage. Make sure the hole remains open. If water leaks through the check hole, the water pump seal is damaged. If oil leaks through the check hole, the engine oil seal is damaged. See the Honda Service Manual or consult your Honda dealer for replacing the water pump seal or the engine oil seal. Both seals should be replaced at the same time.

Coolant Replacement

Refer to Safety Precautions on page 19.

Coolant should be replaced by your Honda dealer, unless you have the proper tools and service data and are mechanically qualified. Refer to the official Honda Service Manual (page 152).

WARNING

Removing the radiator cap while the engine is hot can allow the coolant to spray out, seriously scalding you.

Always let the engine and radiator cool down before removing the radiator cap.

To properly dispose of drained coolant, refer to You & the Environment, page 134.

NOTICE

Improper disposal of drained fluids is harmful to the environment.
Refer to *Safety Precautions* on page 19.

The air cleaner uses polyurethane inner and outer pieces which can’t be separated. A dirty air cleaner will reduce engine power.

Proper air cleaner maintenance is very important for off-road vehicles. A dirty, water-soaked, worn-out, or defective air cleaner will allow dirt, dust, mud, and other impurities to pass into the engine.

Service the air cleaner more frequently if you ride in unusually wet or dusty areas. Your Honda dealer can help you determine the correct service interval for your riding conditions.

Your CRF’s air cleaner has very specific performance requirements. Use a new genuine Honda air cleaner specified for your model or an air cleaner of equal quality.

NOTICE

Using the wrong air cleaner can result in premature engine damage.

Proper air cleaner maintenance can prevent premature engine wear or damage, expensive repairs, low engine power, poor gas mileage, and spark plug fouling.

NOTICE

Improper or lack of proper air cleaner maintenance can cause poor performance and premature engine wear.

Cleaning

1. Remove the seat (page 29).
2. Loosen the air cleaner retaining bolt (1).
3. Align the two access top tabs (2) of the air cleaner (3) and “Δ” mark (4) of the air cleaner housing by rotating the air cleaner counterclockwise.
4. Remove the air cleaner with the retaining bolt, keeping the two access top tabs up.
5. Remove the air cleaner from the air cleaner holder (5).

6. Wash the air cleaner in clean non-flammable cleaning solvent. Then wash in hot, soapy water, rinse well, and allow to dry thoroughly. The air cleaner is made in two pieces: inner and outer, which cannot be separated.
7. Clean the inside of the air cleaner housing.
8. Allow the air cleaner to dry thoroughly. After drying, soak the air cleaner in clean Pro Honda Foam Filter Oil or an equivalent air cleaner oil. Apply air cleaner oil to the entire surface, inner and outer, and rub it with both hands to saturate the air cleaner with oil. Squeeze out excess oil.

(cont’d)
Air Cleaner

9. Apply a thin coat of Honda White Lithium Grease to the sealing surface.
10. Assemble the air cleaner (3) and holder (5). Install the tab (6) of the holder in the hole (7) of the air cleaner tab (8), and the air cleaner retaining bolt (1) through the assembly.

11. Install the assembly into the air cleaner housing keeping the two access top tabs (2) up.
12. Carefully position the sealing flange of the element to prevent dirt intrusion.
13. Align the set tab (9) of the air cleaner with the "∆" mark (4) of the air cleaner housing by rotating the air cleaner clockwise. Tighten the retaining bolt (1) securely.

NOTICE

Improper installation of the air cleaner assembly may allow dirt and dust to enter the engine and cause rapid wear of the piston rings and cylinder.

12. Reinstall the seat (page 29), making sure it is securely attached.
Crankcase Breather

Refer to Safety Precautions on page 19.

Service more frequently if your CRF is ridden in the rain or often at full throttle.
Service the breather if you can see deposits in the transparent section of the drain tube.

Draining

1. Remove the crankcase breather tube plug (1) from the tube (2) and drain deposits.
2. Reinstall the crankcase breather tube plug.

(1) crankcase breather tube plug
(2) tube
Throttle

Refer to Safety Precautions on page 19.

Throttle Freeplay

![Diagram]

(1) freeplay

Inspection
Check freeplay (1).
Freeplay: 1/8 - 3/16 in (3 - 5 mm)
If necessary, adjust to the specified range.

Upper Adjustment
Minor adjustments are generally made with the upper adjuster.

1. Pull the rubber dust cover (2) back.
2. Loosen the upper lock nut (3).
3. Turn the upper adjuster (4).
 Turning the adjuster in direction (−) will decrease freeplay and turning it in direction (+) will increase freeplay.
4. Tighten the lock nut. Return the dust cover to its normal position.
5. After adjustment, check for smooth rotation of the throttle grip from fully closed to fully open in all steering positions.
 If the adjuster is threaded out near its limit or the correct freeplay cannot be reached, turn the adjuster all the way in and back out one turn. Tighten the lock nut, install the dust cover and make the adjustment with the lower adjuster.

![Diagram]

(2) dust cover
(3) lock nut
(4) upper adjuster
(5) lock nut
(6) adjuster

Lower Adjustment
The lower adjuster is used for major freeplay adjustment, such as after replacing the throttle cables or removing the carburetor. It is also used if you can not get the proper adjustment with the upper adjuster.

1. Remove the fuel tank (page 30).
2. Loosen the lock nut (5).
3. Turn the adjuster (6) in direction (−) to decrease freeplay, and in direction (+) to increase freeplay.
4. Tighten the lock nut.
5. Operate the throttle grip to ensure that it functions smoothly and returns completely.
6. Install the fuel tank (page 31).

If you can’t get the freeplay within the specified range, contact your Honda dealer.
Throttle Inspection

1. Check that the throttle assembly is positioned properly and the securing bolts are tight.
2. Check for smooth rotation of the throttle (1) from fully open to fully closed in all steering positions. If there is a problem, see your Honda dealer.
3. Inspect the condition of the throttle cables from the throttle grip down to the carburetor. If the cable is kinked or chafed, have it replaced.
4. Check the cables for tension or stress in all steering positions.
5. Lubricate the cables with a commercially-available cable lubricant to prevent premature rust and corrosion.
Engine Idle Speed

The best way to assure proper carburetion is to see your Honda dealer for regularly scheduled servicing, including carburetor adjustment.

Remember, idle speed adjustment is not a "cure-all" for other problems in your engine's fuel-delivery system. Adjusting the idle will not compensate for a fault elsewhere.

The engine must be at normal operating temperature for accurate idle speed adjustment.

For information about high altitude carburetor adjustment, see page 143.

Idle Speed Adjustment

Refer to Safety Precautions on page 19.

1. Turn the pilot screw (1) in until it is lightly seated and record the number of turns. Turn the pilot screw out the same number of turns.

2. If the engine is cold, start it and warm it up three minutes. Then shut it off.

3. Connect a tachometer to the engine.

4. Shift into neutral. Start the engine.

5. Keep the motorcycle in an upright position.

6. Adjust idle speed with the throttle stop screw (2).

Idle speed:

$1,700 \pm 100 \text{ rpm}$
Refer to **Safety Precautions** on page 19.

Clutch Lever Adjustment

The distance between the tip of the clutch lever and the grip may be adjusted.

Make sure to adjust the clutch lever freeplay after the clutch lever position adjustment or clutch cable disconnected.

1. Loosen the lock nut (1).
2. To position the clutch lever farther away from the handgrip, turn the adjuster (2) counterclockwise. To position the clutch lever closer to the handgrip, turn the adjuster clockwise.
3. Tighten the lock nut.
4. Adjust the clutch lever freeplay.

Clutch Freeplay

Inspection
Check freeplay.
Freeplay: 3/8 – 3/4 in (10 – 20 mm)

If necessary, adjust to the specified range. Improper freeplay adjustment can cause premature clutch wear.

Cable End Adjustment
Minor adjustments are generally made with the clutch cable end adjuster.

- (2) cable end adjuster
- (+) increase freeplay
- (–) decrease freeplay

1. Turn the cable end adjuster (2) to obtain the specified freeplay.
2. Check the freeplay again.

Integral Cable Adjustment
The integral cable adjuster is used if the cable end adjuster is threaded out near its limit — or the correct freeplay cannot be obtained.

1. Turn the cable end adjuster (5) in direction (+) until it seats lightly and then turn it out one turn in direction (–). Make the adjustment with the integral cable adjuster.

If you can’t get proper adjustment, or the clutch does not work properly, the cable may be kinked or worn, or the clutch discs may be worn. See your Honda dealer or refer to the official Honda Service Manual (page 152).
Clutch System

Other Inspections & Lubrication

- Check that the clutch lever assembly is positioned properly and the securing bolts are tight.
- Check the clutch cable for kinks or signs of wear. If necessary, have it replaced.
- Lubricate the clutch cable with a commercially-available cable lubricant to prevent premature wear and corrosion.

Clutch Operation

1. Check for smooth clutch lever operation. If necessary, lubricate the clutch lever pivot or clutch cable.
2. Check the clutch cable for deterioration, kinks, or damage.

Clutch Cover/Disc/Plate Removal

1. Drain the transmission oil (page 40).
2. Remove the rear brake pedal (1) by removing its pivot bolt (2).
3. Remove the five clutch cover bolts (3) and clutch cover (4).
4. Remove the five clutch spring bolts (5) and clutch springs.
 Loosen the bolts in a crisscross pattern in 2 or 3 progressive steps.
5. Remove the clutch pressure plate (6).
6. Remove the clutch lifter (7) and clutch lifter rod (8).
7. Remove the eight clutch discs and seven clutch plates (9).
 Turn the lifter bearing plate of the clutch lifter bearing with your finger. The bearing plate should turn smoothly and quietly. Discard the clutch lifter if the bearing plate does not turn smoothly.
Clutch Disc Inspection

Replace the clutch discs (1) if they show signs of scoring or discoloration. Measure the thickness of each clutch disc. Service Limit: 0.112 in (2.85 mm)

Replace the clutch discs and clutch plates as an assembly.

![Clutch Disc](image1)

(1) clutch disc

Clutch Spring Inspection

Measure the free length of each spring. Service Limit: 1.46 in (37.2 mm)

If one or more springs are beyond the service limit, replace the springs as a set.

![Clutch Spring](image2)

(1) clutch spring

Clutch Disc/Plate Installation

1. Coat the clutch plates (1) with transmission oil.
2. Install the eight clutch discs (2) and seven clutch plates alternately, starting with a clutch disc.
3. Apply grease to the clutch lifter rod (3).
4. Insert the clutch lifter rod into the mainshaft.
5. Install the clutch lifter (4) onto the rod.
6. Install the clutch pressure plate (5).
7. Install the five clutch springs and bolts (6).
8. Tighten the bolts in a crisscross pattern in 2 or 3 steps, to the specified torque: 9 lbf-ft (12 N-m, 1.2 kgf-m)
9. Install a new O-ring (7) in the groove of the clutch cover (8).
10. Install the cover by tightening the five cover bolts to the specified torque: 7 lbf-ft (10 N-m, 1.0 kgf-m)

![Clutch Disc/Plate Installation](image3)

(3) clutch lifter rod (4) clutch lifter

(cont’d)

Clutch System

Servicing Your Honda 51
Clutch System

11. Lubricate the O-ring (9), rear brake pedal (10) pivot and pivot bolt (11) with Honda Lithium Grease and tighten the pivot bolt to the specified torque:
27 lbf-ft (37 N·m, 3.8 kgf·m)

Connect the brake pedal return spring (12) if it was removed.

12. Fill the crankcase with transmission oil (page 40).
Refer to Safety Precautions on page 19.

Hot Start Lever Freeplay

left handlebar

(1) hot start lever
(2) hot start lever freeplay

Inspection
Check freeplay:
1/16 – 1/8 in (2 – 3 mm)
If necessary, adjust to the specified range.

Adjustment
Adjustments can be made with the cable end adjuster.
Loosen the lock nut (3) and turn the adjuster (4).
Turning the adjuster clockwise (+) will increase free play and turning it counterclockwise (−) will decrease free play. After adjustment, tighten the lock nut.
Spark Plug

Refer to Safety Precautions on page 19.

Spark Plug Recommendation

The recommended standard spark plug is satisfactory for most racing conditions.

<table>
<thead>
<tr>
<th>Standard</th>
<th>R0409B-8 (NGK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>For extend high speed</td>
<td>R0409B-9 (NGK)</td>
</tr>
</tbody>
</table>

Use only the recommended type of spark plugs in the recommended heat range.

NOTICE

Using a spark plug with an improper heat range or incorrect reach can cause engine damage. Using a non-resistor spark plug may cause ignition problems.

This motorcycle uses a spark plug that has an iridium tip in the center electrode and a platinum tip in the side electrode. Be sure to observe the following when servicing the spark plug:

- Do not clean the spark plug. If an electrode is contaminated with accumulated objects or dirt, replace the spark plug with a new one.
- Use only a “wire-type feeler gauge” to check the spark plug if necessary. To prevent damaging the iridium tip of the center electrode and platinum tip of the side electrode, never use a “leaf-type feeler gauge”.
- Do not adjust the spark plug gap. If the gap is out of specification, replace the spark plug with a new one.

7. To obtain accurate spark plug readings, accelerate up to speed on a straightaway. Push the engine stop button and disengage the clutch by pulling the lever in. Coast to a stop, then remove and inspect the spark plug. The porcelain insulator around the center electrode should appear tan or medium gray.

If you’re using a new plug, ride for at least ten minutes before taking a plug reading; a brand-new plug will not color initially.

If the electrodes appear burnt, or the insulator is white or light gray (lean) or the electrodes and insulator are black or fouled (rich), there is a problem elsewhere (page 122). Check the carburetor, fuel system and ignition timing.

8. Tighten the spark plug
 If the old plug is good:
 1/8 turn after it seats.
 If installing a new plug, tighten it twice to prevent loosening:
 a) First, tighten the plug: NGK: 1/2 turn after it seats.
 b) Then loosen the plug.
 c) Next, tighten the plug again: 1/8 turn after it seats.

9. Connect the spark plug cap.
10. Install the fuel tank and seat (page 31).
Valve Clearance

Refer to Safety Precautions on page 19.

Excessive valve clearance will cause noise and eventual engine damage. Little or no clearance will prevent the valve from closing and cause valve damage and power loss. Check the valve clearance when the engine is cold at the intervals specified in the Maintenance Schedule.

The checking or adjusting of the clearance should be performed while the engine is cold. The clearance will change as engine temperature rises.

Cylinder Head Cover Removal

Before inspection, clean the engine thoroughly to keep dirt from entering the engine.

1. Remove the crankshaft hole cap (1).
2. Remove the seat (page 29).
3. Remove the fuel tank (page 30).
4. Disconnect the breather tube (1) and spark plug cap (2).

Positioning At Top Dead Center On The Compression Stroke.

1. Remove the crankshaft hole cap (1).
2. Remove the spark plug (2).

(1) crankshaft hole cap
(2) spark plug

(1) breather tube (2) spark plug cap
(3) cylinder head cover bolts (4) cylinder head cover

(3) cylinder head cover bolts
(4) cylinder head cover

(cont’d)
Valve Clearance

3. Rotate the crankshaft by turning the primary drive gear lock bolt (3) (crankshaft) clockwise until aligning the “punch” mark (4) on the primary drive gear with the index mark (5) on the right crankcase cover. In this position, the piston may either be on the compression or exhaust stroke.

If the crankshaft passed the “punch” mark, rotate the primary drive gear lock bolt clockwise again and align the “punch” mark with the index mark.

The inspection must be made when the piston is at the top of the compression stroke when both the intake and exhaust valves are closed. This condition can be determined by moving the exhaust rocker arm (6). If it is free, it is an indication that the valves are closed and that the piston is on the compression stroke. If it is tight and the valves are open, rotate the primary drive gear lock bolt 360° and realign the “punch” mark to the index mark.

Valve Clearance Inspection

2. Measure the exhaust valve clearance by inserting a feeler gauge (1) between the exhaust rocker arm (4) and shim (5).

Valve Clearances:
IN: 0.005 ± 0.001 in (0.12 ± 0.03 mm)
EX: 0.011 ± 0.001 in (0.28 ± 0.03 mm)

If intake valve clearance and exhaust valve clearance need adjustment, see Camshaft Removal (page 57) and select the correct shim for each valve.
CamShaft Removal

1. Record the intake valve clearance and exhaust valve clearance.

2. Remove the cam chain tensioner lifter cover bolt (1) and sealing washer (2).

3. Make a tensioner shaft stopper tool (3) out of a thin piece of steel (0.8 mm thick) using the diagram.

4. Turn the tensioner shaft clockwise with the stopper tool (3) until it stops, in order to retract the tensioner fully. Then insert the stopper tool fully to hold the stopper in the fully retracted position.
Valve Clearance

5. Remove the camshaft holder bolts (4) and camshaft holders (5).

Loosen the camshaft holder bolts in a criss-cross pattern in 2 or 3 steps.

6. Remove the camshaft (6), and then attach a piece of wire to the cam chain to prevent it from falling into the crankcase.

Be careful to not let the set rings of the camshaft holders fall into the crankcase.

7. Remove the valve lifters (7).

Position the removed intake valve lifters and shims to indicate their location such as intake or exhaust, right or left.

NOTICE

Do not let the valve lifters and shims fall into the crankcase.

8. Remove the shims (8).
Valve Clearance

Shim Selection

1. Clean the valve shim contact area in the valve lifter (1) with compressed air.

2. Measure the shim thickness and record it. Seventy-three different thickness shims (2) are available from the thinnest (1.200 mm thickness) shim to the thickest (3.000 mm thickness) in intervals of 0.025 mm.

3. Calculate the new shim thickness using the equation below.

\[A = (B - C) + D \]

- **A**: New shim thickness
- **B**: Recorded valve clearance
- **C**: Specified valve clearance
- **D**: Old shim thickness

- Make sure of the correct shim thickness by measuring the shim with the micrometer.
- Reface the intake valve seat if carbon deposits result in a calculated dimension of over 2.450 mm.
- Reface the exhaust valve seat if carbon deposits result in a calculated dimension of over 3.000 mm.

![Shim Selection Images](image1.png)
Valve Clearance

Camshaft Installation

1. Install the newly selected shims (1) on the valve retainers (2).

NOTICE
Do not let the shims fall into the crankcase.

2. Apply molybdenum disulfide oil (a mixture of 1/2 engine oil and 1/2 molybdenum disulfide grease (containing more than 3% molybdenum disulfide additive)) to the camshaft and outer surface of the each the valve lifters (3).

3. Install the valve lifters and camshaft into the camshaft holder assembly.

4. Rotate the primary drive gear lock bolt (4) (crankshaft) clockwise and align the “punch” mark (5) with the index mark (6).

5. Place the cam sprocket (7) and align the timing mark (8) on the cam sprocket with the surface of the cylinder head (9). Install the cam chain over the sprocket without rotating the sprocket.
Valve Clearance

6. Apply grease to the set rings and install it onto the camshaft holders (10). Install the camshaft holders onto the cylinder head with the intake cam lobes (12) facing up as illustrated below. Apply the oil to the camshaft holder bolt threads and seating surface. Tighten the camshaft holder bolts (11) to the specified torque: 12 lbf-ft (16 N·m, 1.6 kgf-m)

Tighten the camshaft holder bolts in a criss-cross pattern in 2 or 3 steps.

7. Remove the stopper tool (13) from the cam chain tensioner lifter.

8. Install the new sealing washer (14) and cam chain tensioner lifter cover bolt (15).

9. Rotate the camshaft by rotating the crankshaft clockwise several times.

10. Insert the feeler gauge (16) between the intake valve lifter and cam lobe. If the feeler gauge cannot be inserted, the shim is caught between the valve lifter and the valve retainer. Remove the camshaft holders, place the shim correctly, and reinstall the camshaft holders.

Valve Clearances:
IN: 0.005 ± 0.001 in (0.12 ± 0.03 mm)
EX: 0.011 ± 0.001 in (0.28 ± 0.03 mm)
Valve Clearance

11. Install the spark plug (17) (page 54).

12. Coat a new O-ring (18) with grease and install it onto the crankshaft hole cap (19). Apply grease to the crankshaft hole cap threads. Install and tighten the crankshaft hole cap to the specified torque:
 11 lbf-ft (15 N·m, 1.5 kgf·m)

Cylinder Head Cover Installation

1. Remove the spark plug hole packing (1) from the cylinder head cover. Install the spark plug hole packing to the spark plug hole (2).

2. Install the cylinder head cover packing (3) into the groove of the cylinder head cover (4).

3. Tighten the cylinder head cover (5) and cylinder head cover bolts (6) to the specified torque:
 7 lbf-ft (10 N·m, 1.0 kgf·m)

4. Connect the spark plug cap (7) and breather tube (8).

5. Install the fuel tank and the seat (page 31).
Cylinder Head Removal

1. Clean the area above the engine before disassembly to prevent dirt falling into the engine.
2. Drain the engine oil (page 37).
3. Drain the radiator coolant after cooling the motorcycle (page 42).
4. Remove the seat (page 29), and fuel tank (page 30).
5. Remove the muffler and subframe (page 32).
6. Remove the carburetor (page 117).
7. Remove the exhaust pipe joint nuts (1), exhaust pipe (2) and exhaust pipe gasket (3) (page 88).
8. Disconnect the spark plug cap (4).
9. Remove any dirt around the spark plug base.
10. Remove the cylinder head cover (page 55).
 Remove the spark plug (5).
11. Position the piston at top dead center on the compression stroke (page 55).
 Remove the cam shaft holders (page 57).
12. Loosen the radiator hose clamp (6) and disconnect the radiator hose (7).
Piston/Piston Rings/Piston Pin

13. Remove the engine hanger nuts (8) and engine hanger plates (9).

14. Remove the cylinder head bolts (10).

15. Loosen the cylinder bolt (11).

Loosen the nuts in a criss-cross pattern in 2 or 3 steps.

NOTICE

Do not let the nuts, washers, valve lifters, shims, and cam chain fall into the crankcase.

16. Remove the cylinder head nuts, washers (12) and cylinder head (13).

17. Remove the dowel pins (14), cylinder head gasket (15) and cam chain guide (16).

NOTICE

Do not let the dowel pins and cam chain fall into the crankcase.
Cylinder Removal

1. Remove the cylinder bolt (1) and cylinder (2).

NOTICE

Do not let the cam chain fall into the crankcase.
Do not pry on or strike the cylinder.

2. Remove the dowel pins (3) and cylinder gasket (4).

NOTICE

Do not let the dowel pins fall into the crankcase.

![Image of cylinder removal](image)

(1) cylinder bolt
(2) cylinder
(3) dowel pins
(4) cylinder gasket

Piston Removal

1. Place clean shop towels in the crankcase to keep the piston pin clips, or other parts, from falling into the crankcase.
2. Remove the piston pin clips (1) using a pair of needle-nose pliers.
3. Press the piston pin (2) out of the piston (3), and remove the piston.

NOTICE

Do not damage the piston.
Always support the piston when pressing out the pin.
Do not let the clips fall into the crankcase.

Under racing conditions, the piston and rings should be replaced after 15.0 hours of running. Replace the piston pin after 30.0 hours of running.

![Image of piston removal](image)

(1) piston pin clip
(2) piston pin
(3) piston
(4) piston rings

4. Spread each piston rings (4) and remove by lifting it up at a point just opposite the gap.

NOTICE

Do not damage the piston ring by spreading the ends too far.
Piston/Piston Rings/Piston Pin

CamShaft Holders/Cylinder Head/Cylinder/Piston/Piston Pin/Piston Ring Inspection

We recommend you consult the Service Manual or your authorized Honda dealer for correct Service Limit measurements.

Piston Ring Installation

1. Clean the piston ring groove
2. Apply engine oil to the piston rings and install them.

NOTICE

Do not damage the piston ring by spreading the ends too far.
Do not damage the piston during piston ring installation.

- To install the oil ring, install the spacer first, then install the side rails.
- Install the top ring on the piston with the marking side facing up.

3. After installing the rings they should rotate freely, without sticking.
Space the ring end gaps 180 degrees apart between top ring and upper side rail.
Space the ring end gaps 90 degrees apart between upper side rail, spacer and lower side rail.
Piston Installation

1. Place clean shop towels in the crankcase to keep the piston pin clips from falling into the crankcase.
2. Apply molybdenum disulfide oil (a mixture of 1/2 engine oil and 1/2 molybdenum disulfide grease (containing more than 3% molybdenum disulfide additive)) to the connecting rod small end.
3. Install the piston (1) with the “IN” mark (2) and/or the large valve recesses (3) facing the intake side of the engine.
4. Apply fresh engine oil to the piston pin (4). Install the piston pin and new piston pin clips (5).

NOTICE

Use new pin clips. Never reuse old clips. Do not let the clips fall into the crankcase. Do not align the piston pin clip end gap with the piston cut-out.

Cylinder Installation

1. Clean off any gasket material from the gasket surface of the crankcase, being careful not to let any material fall into the crankcase. Be careful not to remove any metal from the gasket surface.
2. Remove the shop towel. Do not let any gasket debris fall into the crankcase.
3. Install the dowel pins (1) and cylinder gasket (2).

NOTICE

Do not let the dowel pins fall into the crankcase.

(1) Dowel pins
(2) Cylinder gasket

4. Clean the any gasket material off the cylinder.
Piston/Piston Rings/Piston Pin

5. Apply clean engine oil to the cylinder wall, piston outer surface and piston rings. Route the cam chain (3) through the cylinder (4). Install the cylinder over the piston rings by hand while compressing the piston rings (5).

NOTICE

Do not damage the piston rings and cylinder walls.

6. Install the cam chain guide (6) and fit the cam chain guide tabs (7) in the cylinder cut-outs (8). Push the guide until it bottoms in the crankcase guide hole.

Cylinder Head Installation

1. Install the dowel pins (1) and new cylinder head gasket (2).

NOTICE

Do not let the dowel pins fall into the crankcase.
2. Route the cam chain through the cylinder head (3). Install the cylinder head.

NOTICE

Do not damage mating surfaces when installing the cylinder head.

3. Apply engine oil to all cylinder head nut threads. Install the washers and cylinder head nuts (4). Tighten the cylinder head nuts to the specified torque:
 29 lbf·ft (39 N·m, 4.0 kgf·m)

NOTICE

Do not let the washers and nuts fall into the crankcase.

Tighten the cylinder head nuts in a criss-cross pattern in 2 or 3 steps.

4. Install the cylinder bolt (5) and cylinder head bolts (6) and tighten them to the specified torque:
 7 lbf·ft (10 N·m, 1.0 kgf·m)

5. Install the engine hanger plates (7), engine hanger nuts (8) of the frame side and engine hanger nut (9) of the engine side. Tighten the engine hanger nut to the specified torque:
 - frame side: 25 lbf·ft (34 N·m, 3.5 kgf·m)
 - engine side: 40 lbf·ft (54 N·m, 5.5 kgf·m)

(cont’d)
Piston/Piston Rings/Piston Pin

6. Connect the radiator hose (9) to the cylinder head and tighten the radiator hose clamp (10) securely.

7. Install the shims and cam shaft (page 60).

8. Install the spark plug (11) (page 54).

9. Install the crankshaft hole cap (page 62).

10. Install the cylinder head cover (page 62). Connect the spark plug cap (12).

11. Install a new exhaust pipe gasket (13), exhaust pipe (14) and exhaust pipe joint nuts (15) and tighten to the specified torque: 15 lbf-ft (21 N-m, 2.1 kgf-m)

12. Install the carburetor (page 121).

13. Install the subframe and muffler (page 32).

14. Install the fuel tank (page 31) and the seat (page 29).

15. Pour a fresh recommended coolant mixture (page 41) slowly into the radiator filler hole up to the filler neck.
Capacity: 1.06 US qt (1.00 l)
Lean your CRF slightly right and left several times to bleed trapped air in the cooling system.
If the coolant level lowers, add coolant and repeat the above procedure.
Install the radiator cap (16) securely.

Check for the following:
- compression leaks
- abnormal engine noise
- secondary air leaks
- coolant leaks
Refer to \textit{Safety Precautions} on page 19

Loose, worn, or damaged suspension components may adversely affect the handling and stability of your CRF. If any suspension components appear worn or damaged, see your Honda dealer for further inspection. Your dealer is qualified to determine whether or not replacement parts or repairs are needed.

\textbf{Front Suspension Inspection}

- When your CRF is new, break it in for approximately one hour to ensure that the suspension has worked in (page 15).
- After break-in, test run your CRF with the front suspension at the standard setting before attempting any adjustments.
- For optimum fork performance, we recommend that you disassemble and clean the fork after riding your CRF for 3 hours. See page 95 for fork disassembly.
- Replace the fork oil every 3 races or 7.5 hours of running. See page 73 for oil level adjustment after changing the fork oil.
- Replace the damper fork oil every 9 races or 22.5 hours of running. See page 98 for damper fork oil level adjustment after changing the fork oil.
- Use Pro Honda HP Fork Oil 5W or an equivalent which contains special additives to assure maximum performance of your CRF’s front suspension.
- Periodically check and clean all front suspension parts to assure top performance. Check the dust seals for dust, dirt, and foreign materials. Check the oil for any contamination.

- Refer to \textit{Suspension Adjustment Guidelines} (page 112). Make all rebound and compression damping adjustments in one-click increments. (Adjusting two or more clicks at a time may cause you to pass over the best adjustment.) Test ride after each adjustment.
- If you become confused about adjustment settings, return to the standard position and start over.
- If the fork is still too stiff/soft after adjusting compression damping, determine which portion of the travel is still too stiff/soft. This is an important step that will help you solve suspension problems.

1. Make sure that the fork protectors (1) and dust seals (2) are clean and not packed with mud and dirt.
2. Check for signs of oil leakage. Damaged or leaking fork seals should be replaced before your CRF is ridden.

3. Inspect the wear rings (3) for wear or damage. Replace the wear ring if it is 0.06 in (1.5 mm) or flat with the outer tube (4). Install the wear ring with its end gap facing rearward.

4. Make a quick check of fork operation by locking the front brake and pushing down on the handlebar several times.
Suspension

Rear Suspension Inspection

The swingarm is controlled by one hydraulic shock absorber with an aluminum reservoir for oil and nitrogen gas pressure. The gas pressure in the reservoir is contained within a rubber bladder.

The shock absorber’s spring preload and damping adjustments (compression and rebound) should be adjusted for the rider’s weight and track conditions (page 111).

Do not attempt to disassemble, service, or dispose of the damper; see your Honda dealer. The instructions found in this owner’s manual are limited to adjustments of the shock assembly only.

- When your CRF is new, break it in for approximately one hour with the standard suspension settings before attempting to adjust the rear suspension.
- Make all compression and rebound damping adjustments in the specified increment or turns described in page 108. (Adjusting two or more increments or turns at a time may cause you to pass over the best adjustment.) Test ride after each adjustment.
- If the rear suspension is too stiff/soft, adjust it by turning all the compression and rebound adjusters according to the procedures described in page 108. After adjusting the adjusters simultaneously, suspension may be fine-tuned by turning one of the compression and rebound damping adjusters in one click or in 1/12 turn increments.
- If you have a problem finding an acceptable adjustment, return to the standard position and begin again.

1. Bounce the rear of the motorcycle up and down and check for smooth suspension action.

2. Remove the subframe (page 32).
3. Check for a broken or collapsed spring.
4. Check the shock (1) for a bent shaft or oil leaks.

5. Push the rear wheel sideways to check for worn or loose swingarm bearings. There should be no movement. If there is, have the bearings replaced by your authorized Honda dealer.

1. rear shock absorber
Recommended Fork Oil

<table>
<thead>
<tr>
<th>viscosity (weight)</th>
<th>5 W</th>
</tr>
</thead>
<tbody>
<tr>
<td>suggested oil</td>
<td>Pro Honda HP Fork Oil or equivalent</td>
</tr>
</tbody>
</table>

Fork Oil Change

Refer to *suspension removal on* (page 95).

1. Record the rebound damping adjuster position and turn the adjuster counterclockwise until it stops.
2. Hold the outer tube (1), then remove the fork damper (2) from the outer tube using a lock nut wrench (3). Gently slide the outer tube down onto the lower end of the slider (4).

3. Pour the fork oil from the outer tube (1). Pour the fork oil from the oil hole (9) of the fork damper.

4. Drain the fork oil by turning the outer tube (1) upside down. (About 12 cc of fork oil will be left in the outer tube when it is left inverted for about 20 minutes at 20 °C/68°F.)

NOTICE

The outer tube can drop on the slider and damage the fork dust seal and guide bushing when the fork damper is removed. To avoid damage, hold both the outer tube and slider when removing the fork damper.

![Diagram showing the parts of the fork and their labels](image)

- Outer tube (1)
- Fork damper (2)
- Lock nut wrench (3)
- Slider, lower end (4)
- Dust seal (5)
- Guide bushing (6)
- Outer tube (7)
- Oil hole (9)

Amount of fork oil left in the fork unit: cc

<table>
<thead>
<tr>
<th>unit: cc</th>
<th>5</th>
<th>10</th>
<th>20</th>
<th>35</th>
<th>55</th>
<th>85</th>
<th>145</th>
</tr>
</thead>
<tbody>
<tr>
<td>30/86</td>
<td>27</td>
<td>15.3</td>
<td>10.6</td>
<td>9.4</td>
<td>8.3</td>
<td>7.9</td>
<td>7.9</td>
</tr>
<tr>
<td>20/68</td>
<td>29.4</td>
<td>16.5</td>
<td>11.8</td>
<td>10.6</td>
<td>9.4</td>
<td>8.2</td>
<td>8.2</td>
</tr>
<tr>
<td>10/50</td>
<td>28.2</td>
<td>21.2</td>
<td>16.5</td>
<td>15.3</td>
<td>12.9</td>
<td>11.8</td>
<td>11.8</td>
</tr>
<tr>
<td>0/32</td>
<td>30.6</td>
<td>22.4</td>
<td>18.8</td>
<td>16.5</td>
<td>16.5</td>
<td>15.3</td>
<td>14.1</td>
</tr>
</tbody>
</table>

![Graph showing the amount of fork oil left after inversion](image)

(cont’d)
Suspension

5. Pour the recommended fork oil into the outer tube (1).

Fork Oil Capacity:

<table>
<thead>
<tr>
<th>Standard (0.45 kgf/mm) Fork Spring</th>
<th>Optional Softer (0.43 kgf/mm) Fork Spring</th>
<th>Optional Stiffer (0.47 kgf/mm) Fork Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard oil capacity</td>
<td>12.5 US oz (371 cm³)</td>
<td>12.4 US oz (368 cm³)</td>
</tr>
<tr>
<td>Maximum oil capacity</td>
<td>14.1 US oz (417 cm³)</td>
<td>Slightly stiffer as it nears full compression.</td>
</tr>
<tr>
<td>Minimum oil capacity</td>
<td>10.9 US oz (321 cm³)</td>
<td>Slightly stiffer as it nears full compression.</td>
</tr>
</tbody>
</table>

Be sure the oil capacity is the same in both fork legs.
6. Check that the O-ring (10) on the fork damper (2) is in good condition. Apply the recommended fork oil to the O-ring.

7. Tighten the fork damper using the special tool, to the specified torque:
 25 lb·ft (34 N·m, 3.5 kgf·m)
Brakes

Refer to Safety Precautions on page 19.

Both the front and rear brakes are the hydraulic disc type. As the brake pads wear, the brake fluid level will drop. A leak in the system will also cause the level to drop.

Frequently inspect the system to ensure there are no fluid leaks. Periodically inspect the brake fluid level and the brake pads for wear.

If the front brake lever or rear brake pedal freeplay does not feel within the normal range while riding, check the brake pads. If they are not worn beyond the recommended limit (page 79), there is probably air in the brake system. Refer to the Honda Service Manual or see your Honda dealer to have the air bled from the system.

Front Brake Lever Adjustment

1. Loosen the lock nut (1).
2. To position the brake lever farther away from the handgrip, turn the adjuster (2) clockwise. To position the brake lever closer to the handgrip, turn the adjuster counterclockwise.
3. Tighten the lock nut.
4. Apply the brake, release it, then spin the wheel and check that it rotates freely. Repeat this procedure several times.
5. Check freeplay by pulling in slowly on the front brake lever until the brake starts to engage. Freeplay: 0.8 in (20 mm)
6. Apply grease to the contacting faces of the adjuster and piston (3).

Brake Pedal Height

The brake pedal height should be approximately level with the right footpeg.

1. Loosen the lock nut (1) and turn the adjusting bolt (2) in direction (+) to raise the pedal (3) or in direction (–) to lower it.
2. Tighten the lock nut at the desired pedal height.

(1) lock nut
(2) adjusting bolt
(3) rear brake pedal

(+): raise the pedal height
(–): lower the pedal height
Brakes

Fluid Level Inspection

Front Brake Fluid Level Check

(1) LOWER level mark

With the motorcycle in an upright position, check the fluid level. It should be above the LOWER level mark (1). If the level is at or below the LOWER level mark, check the brake pads for wear (page 79). Worn brake pads should be replaced. If the pads are not worn, have your brake system inspected for leaks.

If the brake lever freeplay exceeds 0.8 in (20 mm), there is probably air in the brake system and it must be bled. Refer to the Honda Service Manual or see your Honda motorcycle dealer for brake bleeding.

Rear Brake Fluid Level Check

(2) LOWER level mark

With the motorcycle in an upright position, check the fluid level. It should be above the LOWER level mark (2). If the level is at or below the LOWER level mark, check the brake pads for wear (page 79). Worn brake pads should be replaced. If the pads are not worn, have your brake system inspected for leaks.

If the brake pedal freeplay exceeds 0.8 in (20 mm), there is probably air in the brake system and it must be bled. Refer to the Honda Service Manual or see your Honda motorcycle dealer for brake bleeding.

(cont’d)
Brakes

Adding Front Brake Fluid
The recommended brake fluid is Honda DOT 4 brake fluid or an equivalent. When adding brake fluid be sure the reservoir is horizontal before the cap is removed or brake fluid may spill out.

1. Remove the screws (1), reservoir cap (2) and diaphragm.
2. Fill the reservoir with DOT 4 brake fluid to the upper level mark (3). Do not overfill.
3. Reinstall the diaphragm and reservoir cap.
4. Tighten the screws securely to the specified torque:
 1.1 lbf-ft (1.5 N-m, 0.15 kgf-m)

Adding Rear Brake Fluid
The recommended brake fluid is Honda DOT 4 brake fluid or an equivalent. When adding brake fluid be sure the reservoir is horizontal before the cap is removed or brake fluid may spill out.

1. Remove the bolts (4) reservoir cap and diaphragm (5).
2. Fill the reservoir with DOT 4 brake fluid to the upper level mark (6). Do not overfill.
3. Reinstall the diaphragm and reservoir cap.
4. Tighten the bolts to the specified torque:
 1.1 lbf-ft (1.5 N-m, 0.15 kgf-m)

Other Inspection
- Make sure there are not fluid leaks.
- Check for deterioration or cracks in the hoses and fittings.
Brake Pad Wear

Brake pad wear depends on the severity of usage and track conditions. (Generally, the pads will wear faster on wet and dirty tracks) Inspect the pads at each regular maintenance interval (page 21).

Front Brake Pads
Inspect the brake pads (2) through the front wheel to determine the pad wear. If either pad is worn anywhere to a thickness of 0.04 in (1 mm), both pads must be replaced.

Rear Brake Pads
Inspect the brake pads (5) from the rear side of the caliper to determine the pad wear. If either pad is worn anywhere to a thickness of 0.04 in (1 mm), both pads must be replaced.

Other Inspections

Check that the front lever and rear pedal assemblies are positioned properly and the securing bolts are tight.

Make sure there are no fluid leaks. Check for deterioration or cracks in the hoses and fittings.
Wheels

Refer to *Safety Precautions* on page 19.

Maintenance of spoke tension and wheel trueness (roundness) is critical to safe motorcycle operation. During the first 100 miles (150 km), spokes will loosen more rapidly due to the initial seating of the parts. Excessively loose spokes may result in instability at high speeds and the possible loss of control. It’s also important that the rim locks are secure to prevent tire slippage.

It is not necessary to remove the wheels to perform the recommended service in the Maintenance Schedule (page 21). However, information for wheel removal is provided for emergency situations.

Wheel Rims & Spokes

1. Inspect the wheel rims (1) and spokes (2) for damage.
2. Tighten any loose spokes and rim locks (3) to the specified torque:
 - Front Spoke: 2.7 lbf-ft (3.68 N·m, 0.38 kgf·m)
 - Rear Spoke: 2.7 lbf-ft (3.7 N·m, 0.38 kgf-m)
 - Rim Lock: 9.4 lbf-ft (13 N·m, 1.3 kgf-m)
3. Check wheel rim runout. If runout is noticeable, see the Honda Service Manual for inspection instructions.

Axles & Wheel Bearings

See the Honda Service Manual for inspection information:

1. Check the axle shaft for runout.
2. Check the condition of the wheel bearings.
Refer to Safety Precautions on page 19.

To safely operate your CRF the tires must be the proper type (off-road) and size, in good condition with adequate tread, and correctly inflated.

WARNING

Using tires that are excessively worn or improperly inflated can cause a crash in which you can be seriously hurt or killed.

Follow all instructions in this owner’s manual regarding tire inflation and maintenance.

The following pages give detailed information on how and when to check your air pressure, how to inspect your tires for wear and damage, and our recommendations on tire repair and replacement.

Air Pressure

Properly inflated tires provide the best combination of handling, tread life, and riding comfort. Generally, underinflated tires wear unevenly, adversely affect handling, and are more likely to fail from being overheated. Underinflated tires can also cause wheel damage on hard terrain. Overinflated tires make your motorcycle ride more harshly, are more prone to damage from surface hazards, and wear unevenly.

Make sure the valve stem caps are secure. If necessary, install a new cap.

Always check air pressure when your tires are “cold.” If you check air pressure when your tires are “warm” — even if your CRF has only been ridden for a few miles — the readings will be higher. If you let air out of warm tires to match the recommended cold pressures, the tires will be underinflated.

The correct “cold” tire pressures are:

<table>
<thead>
<tr>
<th></th>
<th>Front</th>
<th>Rear</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15 psi</td>
<td>15 psi</td>
</tr>
<tr>
<td></td>
<td>(100 kPa, 1.0 kgf/cm²)</td>
<td>(100 kPa, 1.0 kgf/cm²)</td>
</tr>
</tbody>
</table>

If you decide to adjust tire pressures for a particular riding condition, make changes a little at a time.

Inspection

Take time to inspect your tires and wheels before you ride.

- Inspect carefully for bumps or bulges in the side of the tire or the tread. Replace any tire that has a bump or bulge.
- Look closely for cuts, slits, or cracks in the tires. Replace a tire if you can see fabric or cord.
- Check for rocks or other objects embedded in the tire or tread. Remove any objects.
- Measure tread depth (1). Replace the tire before depth at the center reaches 0.12 in (3 mm), or any time you notice a reduction in traction.
- Check the position of both valve stems. A tilted valve stem indicates the tube is slipping inside the tire or the tire is slipping on the rim.

Tube Replacement

If a tube is punctured or damaged, you should replace it as soon as possible. A repaired tube may not have the same reliability as a new one, and it may fail while you are riding.

Use a replacement tube equivalent to the original.
Tires & Tubes

Tire Replacement

The tires that came on your CRF were designed to provide a good combination of handling, braking, durability, and comfort across a broad range of riding conditions.

⚠️ WARNING

Installing improper tires on your motorcycle can affect handling and stability. This can cause a crash in which you can be seriously hurt or killed.

Always use the size and type of tires recommended in this owner’s manual.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Front</td>
<td>80/100-21 51M</td>
</tr>
<tr>
<td>Rear</td>
<td>100/90-19 57M</td>
</tr>
<tr>
<td>Type</td>
<td>bias-ply, tube</td>
</tr>
</tbody>
</table>

- Use a replacement tire equivalent to the original.
- Replace the tube any time you replace a tire. The old tube will probably be stretched and, if installed in a new tire, could fail.
Refer to Safety Precautions on page 19.

The service life of the chain depends on proper lubrication and adjustment. Poor maintenance can cause premature wear or damage to the drive chain or sprockets.

When the motorcycle is ridden on unusually dusty or muddy tracks, more frequent maintenance will be necessary.

Before servicing your drive chain, turn the engine OFF, raise the rear wheel off the ground by placing the optional workstand or equivalent support under the engine and check that your transmission is in neutral.

It is not necessary to remove or replace the drive chain to perform the recommended service in the Maintenance Schedule.

Drive Chain Inspection

1. Turn the engine off, raise the rear wheel off the ground by placing the optional workstand or equivalent support under the engine and shift the transmission into neutral.

2. Check slack (1) in the upper drive chain run midway between the sprockets (2)(3). Drive chain slack should allow the following vertical movement by hand:

 \[1 - 1 \frac{3}{8} \text{ in (25 - 35 mm)} \]

3. Check drive chain slack at several points along the chain. The slack should remain constant. If it isn’t, some links may be kinked and binding. Lubricating the chain will often eliminate binding and kinking.

4. Inspect the drive chain for:
 - damaged rollers
 - loose pins
 - dry or rusted links
 - kinked or binding links
 - excessive wear

Replace the drive chain (page 85) if it has damaged rollers, loose pins, or kinks that cannot be freed. Lubricate the drive chain (page 84) if it appears dry or shows signs of rust. Lubricate any kinked or binding links and work them free. Adjust chain slack if needed.

NOTICE

Excessive chain slack may allow the drive chain to damage the engine cases.

5. Check the chain slider (4) for wear. If the wear is 3/16 in (5 mm) or more, replace it.

6. Check the chain guide slider (5) for wear. Replace the chain guide slider if it is worn to the bottom of the wear limit groove (6).

Servicing Your Honda 83
Drive Chain

7. Check the upper drive chain roller (6) and lower drive chain roller (7) for wear or damage. Replace if necessary.
 Upper Roller: 1.5 in (39 mm)
 Lower Roller: 1.2 in (31 mm)

If the upper drive chain roller was removed, install the drive chain roller with its “→” mark (8) side facing out.
Install the lower drive chain roller.

8. Check the driven sprocket nut torque values after each race.
 24 lbf-ft (32 N-m, 3.3 kgf-m)

Adjustment

1. Loosen the rear axle nut (1).
2. Loosen both the lock nuts (2) and turn the adjusting bolts (3) counterclockwise to decrease slack or clockwise to increase slack. Align the index marks (4) of the axle plates (5) with the same reference marks (6) on both sides of the swingarm.

3. Tighten the rear axle nut to the specified torque:
 94 lbf-ft (128 N-m, 13.0 kgf-m)
4. Recheck chain stack and adjust as necessary.
5. Loosen the adjusting bolt counterclockwise lightly until it touches the axle plate. Then, while holding the adjusting bolt with a wrench, tighten the lock nut to the specified torque:
 20 lbf-ft (27 N-m, 2.8 kgf-m)

Lubrication

Commercially prepared drive chain lubricants may be purchased at most motorcycle shops and should be used in preference to motor oil. Pro Honda Chain Lube or an equivalent, or SAE 80 or 90 gear oil is recommended.

Saturate each chain joint so that the lubricant penetrates the space between adjacent surfaces of the link plates and rollers.
Servicing Your Honda

Drive Chain

Removal, Cleaning & Replacement

For maximum service life, the drive chain should be cleaned, lubricated, and adjusted before each outing.

1. Remove the master link retaining clip (1) with pliers. Do not bend or twist the clip. Remove the master link (2). Remove the drive chain.

2. Clean the drive chain in high flash-point solvent and allow it to dry.

3. Inspect the drive chain for possible wear or damage. Replace the drive chain if it has damaged rollers, loose fitting links, or otherwise appears unserviceable.

 - **Replacement chain:**
 - D.I.D.520DMA2

 - **Damage:**
 - **Damaged Sprocket Teeth**
 - **Worn Sprocket Teeth**
 - **Normal Sprocket Teeth**

 - **REPLACE**

4. Inspect the sprocket teeth for wear or damage. We recommend replacing the sprocket whenever a new chain is installed. Both chain and sprockets must be in good condition, or the new replacement chain or sprocket(s) will wear rapidly. Excessively worn sprocket teeth have a hooked, worn appearance. Replace any sprocket which is damaged or excessively worn.

 - **NOTICE**
 - **Use of a new chain with worn sprockets will cause rapid chain wear.**

5. Measure a section of the drive chain to determine whether the chain is worn beyond its service limit. Put the transmission in gear, and then turn the rear wheel forward until the lower section of the chain is pulled taut. With the chain held taut and any kinked joints straightened, measure the distance between a span of 17 pins, from pin center to pin center. If the measurement exceeds the service limit, replace the chain. After the chain is measured, shift the transmission into neutral again before proceeding with inspection and service.

 - **Service limit:** 10.20 in (259.0 mm)

6. Lubricate the drive chain.

7. Pass the chain over the sprockets and join the ends of the chain with the master link. For ease of assembly, hold the chain ends against adjacent rear sprocket teeth while inserting the master link. Install the master link retaining clip so that the closed end of the clip will face the direction of forward wheel rotation.

8. Recheck chain slack and adjust as necessary.

 - **More About Drive Chain**

 - **•** The master link is the most critical element of drive chain security. Master links are reusable, as long as they remain in excellent condition. We recommend installing a new master link retaining clip when the drive chain is reassembled.

 - **•** You may find it easier to install a new chain by connecting it to the old chain with a master link and pulling the old chain to position the new chain on the sprockets.
Exhaust Pipe/Muffler

Exhaust Pipe/Muffler Inspection
1. Check the flange bolts for tightness.
2. Check the exhaust pipe and muffler for cracks or deformation.
 A damaged exhaust pipe and muffler may reduce engine performance.

Muffler Removal
1. Remove the seat bolt (1), collars (2), side cover bolt (3) and right side cover (4).
2. Loosen the muffler clamp bolt (5).
3. Remove the muffler A bolt (6), muffler B bolt/washer (7) and muffler (8).
Muffler Installation

1. Install the muffler clamp (1) by aligning the tab (2) of the muffler clamp with the cut-out (3) of the muffler (4).

2. Remove the old gasket.
3. Install the new gasket (5).
4. Install the muffler.

5. Tighten the muffler A bolt (6) and muffler B bolt/washer (7) to the specified torque: 19 lbf·ft (26 N-m, 2.7 kgf·m)

6. Tighten the muffler clamp bolt (8) to the specified torque: 15 lbf·ft (21 N-m, 2.1 kgf·m)

7. Install the right side cover (9), collar (10) and side cover bolt (11).
8. Install the collar (10) and seat bolt (12) and tighten the bolt to the specified torque: 19 lbf·ft (26 N-m, 2.7 kgf·m)
Exhaust Pipe/Muffler

Exhaust Pipe Removal

1. Remove the muffler (page 86).
2. Remove the exhaust pipe joint nuts (1), exhaust pipe (2) and exhaust pipe gasket (3).

Exhaust Pipe Installation

1. Install a new exhaust pipe gasket (1), exhaust pipe (2) and exhaust pipe joint nuts (3) and tighten to the specified torque: 15 lbf-ft (21 N-m, 2.1 kgf-m)
2. Install the muffler (page 87).
Additional Maintenance Procedures

Refer to Safety Precautions on page 19.

Steering Head Bearings Inspection

1. With your CRF on a box or workstand (front wheel elevated), turn the handlebar to the right and left to check for roughness in the steering head bearings.
2. Stand in front of your CRF, grab the fork (at the axle), look at the steering head, and push the fork in and out (toward the engine) to check for play in the steering head bearings. If any roughness or play is felt, but you do not see any movement in the steering head, the fork bushings may be worn. Refer to the Honda Service Manual for replacement or adjustment procedures, or see your Honda dealer.

Handlebar Inspection

1. Remove the handlebar pad.
2. Check the handlebar (1) for bends or cracks.
3. Check that the handlebar has not moved from its proper position (by inspecting the punch mark).
4. Tighten the front bolts first.
5. Check the torque of the upper holder (2) bolts: 16 lbf-ft (22 N·m, 2.2 kgf·m)

Control Cables

Periodically, disconnect the throttle, clutch and hot start cables at their upper ends. Thoroughly lubricate the cable pivot points with a commercially-available cable lubricant. Be certain that the throttle cables have no kinks or other damage.
Additional Maintenance Procedures

Nuts, Bolts, Fasteners

Check and tighten nuts, bolts, and fasteners before every outing.

<table>
<thead>
<tr>
<th>Item</th>
<th>Torque</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lbf•ft</td>
</tr>
<tr>
<td>ENGINE</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Cylinder head cover</td>
</tr>
<tr>
<td>2</td>
<td>Exhaust pipe joint nut</td>
</tr>
<tr>
<td>3</td>
<td>Water pump cover</td>
</tr>
<tr>
<td>4</td>
<td>Crankshaft hole cap</td>
</tr>
<tr>
<td>5</td>
<td>Transmission oil check bolt</td>
</tr>
<tr>
<td>6</td>
<td>Clutch cover</td>
</tr>
<tr>
<td>7</td>
<td>Cylinder bolt</td>
</tr>
<tr>
<td>8</td>
<td>Oil filter cover</td>
</tr>
<tr>
<td>9</td>
<td>Cylinder head bolt</td>
</tr>
<tr>
<td>10</td>
<td>Drive sprocket</td>
</tr>
</tbody>
</table>

LEFT SIDE

- (7) cylinder bolts
- (8) oil filter cover
- (9) cylinder head bolt
- (10) drive sprocket

RIGHT SIDE

- (1) cylinder head cover
- (2) exhaust pipe joint nuts
- (3) water pump cover
- (4) crankshaft hole cap
- (5) transmission oil check bolt
- (6) clutch cover

90 Servicing Your Honda
Appearance Care

Refer to Safety Precautions on page 19.

Frequent cleaning and polishing will keep your Honda looking newer longer. Frequent cleaning also identifies you as an owner who values his motorcycle. A clean CRF is also easier to inspect and service.

While you’re cleaning, be sure to look for damage, wear, and gasoline or oil leaks.

General Recommendations

- To clean your CRF you may use:
 - water
 - a mild, neutral detergent and water
 - a mild spray and wipe cleaner/polisher
 - a mild spray and rinse cleaner/degreaser and water
- Avoid products that contain harsh detergents or chemical solvents that could damage the metal, paint, and plastic on your CRF or discolor the seat and decals.
- If your CRF is still warm from recent operation, give the engine and exhaust system time to cool off.
- We recommend the use of a garden hose to wash your CRF. High pressure washers, (like those at coin-operated car washes) can damage certain parts of your CRF. The force of water under extreme pressure can penetrate the dust seals of the suspension pivot points and steering head bearings-driving dirt inside and needed lubrication out.
- If you use a high pressure washer, avoid spraying the following areas:
 - wheel hubs
 - muffler outlet
 - under seat
 - engine stop button
 - brake master cylinders
 - under fuel tank
 - drive chain
 - carburetor
 - steering head bearings
 - suspension pivot points

Washing Your Motorcycle with a Mild Detergent

1. Rinse your CRF thoroughly with cool water to remove loose dirt.
2. Fill a bucket with cool water. Mix in a mild, neutral detergent, such as dish washing liquid or a product made especially for washing motorcycles or automobiles.
3. Wash your CRF with a sponge or a soft towel. As you wash, check for heavy grime. If necessary, use a mild cleaner/degreaser to remove the grime.

Do not use steel wool to clean the frame as it could damage or discolor the frame surface. Muffler stain remover is for removing stains on the non-coated aluminum frame only.

4. After washing, rinse your CRF thoroughly with plenty of clean water to remove any residue.
5. Dry your CRF with a chamois or a soft towel.
6. Lubricate the drive chain to prevent rusting.
7. Start the engine and let it idle for several minutes. The engine heat will help dry moist areas.
8. As a precaution, ride at a slow speed and apply the brakes several times. This will help dry the brakes and restore normal braking performance.
Appearance Care

Condensation Control

Some condensation can form within the transmission cavity as well. This is natural and just one more reason you should change the engine and transmission oil often.

After Cleaning Lubrication

There are some things you should do just after washing your CRF to help prevent rust and corrosion.

Once your CRF is clean and dry, you should protect any bare steel from rusting by applying a light coating of a rust-inhibitor. Lubricate the drive chain and drive sprocket after removing and thoroughly cleaning in solvent. Be sure the chain is wiped clean and is dry before applying the chain lube.

Follow the suggestions given in the pages of this manual for lubricating items such as the brake and clutch lever pivot points and footpeg pivot pins.

Aluminum Frame Maintenance

Aluminum corrodes when it comes in contact with dust, mud and road salt.

To remove stains, use Scotch Brite Hand Pad #7447 (maroon) or an equivalent. Wet the pad and polish the surface using strokes parallel to the length of the frame.

Clean the frame using a wet sponge and a mild detergent, then rinse well with clean water. Dry the frame with a soft clean cloth, using strokes parallel to the length of the frame.

NOTICE

Do not use steel wool to clean the frame as it could damage or discolor the frame surface. Muffler stain remover (Scotch Brite Hand Pad #7447-maroon) is for removing stains on the non-coated aluminum frame only.

Exhaust Pipe Maintenance

The exhaust pipe is stainless steel, but may became stained by oil or mud.

Remove heat stains with a liquid kitchen abrasive.
This section tells you how to fine tune your CRF for maximum competition performance.

Initial suspension adjustments should be performed after a minimum of two hours of easy break-in time.

Optional front and rear suspension springs are available in both firmer and softer than standard rates, in order to tailor your CRF specifically for your weight, riding style and course conditions.

Follow the instructions given in the rear suspension sag setting section of *Rear Suspension Adjustments* to determine if your combined rider and sprung machine weight (rider fully dressed for competition and machine coolant, oil and fuel levels ready for competition) requires an optional firmer or softer rear spring. The need for either optional rear spring may need to be balanced by installing the optional fork springs of a similar rate.
Front Suspension Adjustments

The front suspension can be adjusted for the rider’s weight and riding conditions by using one or more of the following methods:

- **Oil volume** — The effects of higher or lower fork oil level are only felt during the final 3.9 in (100 mm) of fork travel.
- **Compression damping** — Turning the compression damping screw adjusts how quickly the fork compresses.
- **Rebound damping** — Turning the rebound damping screw adjusts how quickly the fork extends.
- **Fork springs** — Optional springs are available in softer and stiffer types than the standard rate. (page 147)

The inverted fork on your CRF features sealed damper cartridges with dual (separate air and oil) chambers to prevent aeration. The design also isolates the oil in each fork tube/slider, which may contain air bubbles and/or metal particles, from the sealed cartridge to provide more consistent damping.

Front Suspension Air Pressure

Air is an unstable gas which builds up pressure as it is worked (such as in a fork). Air pressure acts as a progressive spring and affects the entire range of fork travel. This means the fork action on your CRF will get stiffer during a race. For this reason, release built-up air pressure in the fork legs between motos. Be sure the fork is fully extended with the front tire off the ground when you release the pressure.

The standard air pressure is 0 psi (0 kPa, 0 kgf/cm²). You may relieve accumulated air pressure in the fork legs by using the pressure release screws. The front wheel should be off the ground before you release the pressure. The air pressure should be adjusted according to the altitude and outside temperature.

1. Place an optional workstand under the engine, so that the front wheel is off the ground. Do not adjust air pressure with the front wheel on the ground as this will give false pressure readings.
2. Remove the pressure release screw (1).
3. Check that the O-ring (2) is in good condition.
4. Install the pressure release screw to the specified torque: 0.9 lbf-ft (1.2 N·m, 0.12 kgf-m)

Front Suspension Damping

Rebound Damping Adjustment

The fork rebound damping adjuster screw (1) has 16 positions or more. Turning the adjuster screw one full turn clockwise advances the adjuster four positions. To adjust the rebound damping to the standard setting, proceed as follows:

Turn the adjuster clockwise until it will no longer turn (lightly seats). This is the full hard position. The adjuster is set in the standard position when the adjuster is turned counterclockwise 8 clicks. Make sure that both fork legs are adjusted to the same position.

Compression Damping Adjustment

This adjustment affects how quickly the fork compresses. The fork compression damping adjuster screw (2) has 16 positions or more. Turning the adjuster screw one full turn changes the adjuster four positions. To adjust the adjuster to the standard position, proceed as follows:

Turn the adjuster clockwise until it will no longer turn (lightly seats). This is the full hard position. The adjuster is set in the standard position when the adjuster is turned counterclockwise 10 clicks. Make sure that both fork legs are adjusted to the same position.
Front Suspension Adjustments

Both compression and rebound damping can be increased by turning the adjuster clockwise.

NOTICE

Always start with full hard when adjusting damping.
Do not turn the adjuster screw more than the given positions or the adjuster may be damaged.
Be sure that the rebound and compression adjusters are firmly located in a detent, and not between positions.

Fork Springs

The fork springs in CRF’s are about right for riders weighing between 150 and 160 lbs (less riding gear). So if you’re a heavier rider, you have to go up on the oil level or get a stiffer spring. Do not use less oil than the minimum specified for each spring or there will be a loss of rebound damping control near full extension. If the fork is too hard on big bumps, turn the damping adjuster counterclockwise 1-turn and lower the oil level in increments of 0.2 oz (5 cc) in both fork legs until the desired performance is obtained. Do not, however, lower the oil level below the minimum oil level.

Minimum oil capacity:
- Standard spring: 10.9 US oz (321 cm³)
- Softer spring: 10.8 US oz (318 cm³)
- Stiffer spring: 11.0 US oz (324 cm³)

When adjusting oil levels, bear in mind that the air in the fork will increase in pressure while riding; therefore, the higher the oil level, the higher the eventual pressure of any air in the fork.

Front Suspension Disassembly

- If your CRF is brand-new, put enough part-throttle break-in time (about one hour) on it to ensure that the suspension has worked in.
- For optimum performance, and extended fork life, the fork should be completely disassembled and cleaned after the first three hours of riding. See the Service Manual or your authorized Honda dealer for this service.

1. Place your CRF on the optional workstand or equivalent support with the front wheel off the ground.
2. Remove the number plate bolt (1) and number plate (2).

![Diagram of number plate bolt and number plate](image)

(1) number plate bolt
(2) number plate

(Cont’d)
Front Suspension Adjustments

3. Remove the handlebar pad. Remove the washers/handlebar holder nuts (3), mounting rubbers and handlebar (4).

NOTICE
Keep the master cylinder upright to prevent air from entering system.

4. Loosen the upper pinch bolts (5).

5. Loosen the fork damper (6), but do not remove them yet.

NOTICE
Do not use an adjustable wrench to loosen the fork damper: it may damage them. Loosen the upper pinch bolts before loosening the fork damper to avoid damaging the fork cap.

6. Remove the disc cover (7) by removing the disc cover bolts (8).

7. Remove the front axle nut (9) and loosen the front axle pinch bolts (10) on both forks. Pull the front axle shaft (11) out of the wheel hub and remove the front wheel.

8. Remove the fork protector (12) and brake caliper (13).

NOTICE
Do not support the brake caliper by the brake hose. Do not operate the brake lever after the front wheel is removed. To do so will cause difficulty in fitting the brake disc between the brake pads.

9. Loosen the fork leg lower pinch bolts (14), then pull the fork legs down and out.
10. Clean the fork assembly, especially the sliding surface of the slider (15) and dust seal (16).

NOTICE

The outer tube can drop on the slider and damage the fork dust seal and guide bushing when the fork damper is removed. To avoid damage hold both the outer tube and slider when removing the fork cap.

11. Record the rebound damping adjuster position and turn the adjuster counterclockwise until it stops.

12. Measure the length (17) between the axle holder and outer tube and record it before disassembling the fork.

13. Hold the outer tube (18), then remove the fork damper (19) from the outer tube using a lock nut wrench (20). Gently slide the outer tube down onto the lower end of the slider (21).

14. Pour the fork oil from the outer tube. Pour the fork oil from the oil hole (22) of the fork damper.

15. Temporarily install the fork damper to the outer tube.

16. Set the lower end (axle holder) (23) of the slider in a vise with a piece of wood or soft jaws to avoid damage.

NOTICE

Overtightening the vise can damage the axle holder.

17. Loosen the fork center bolt (24).

18. Push out the fork center bolt from the axle holder of the slider by pushing the fork damper.

19. Make the mechanic's stopper tool out of a thin piece of steel (1.0 mm thick) as shown if you do not have the special tool.
Front Suspension Adjustments

20. Apply pressure to the fork damper and insert a special tool or mechanic’s stopper tool (25) (see below) between the axle holder (23) and lock nut (26).

21. Hold the lock nut and remove the fork center bolt (24) from the fork damper.

NOTICE

Do not remove the lock nut from the fork damper piston rod. If the lock nut is removed, the piston rod will fall in the fork damper and you cannot reassemble the fork damper.

22. Remove the push rod (27) from the fork damper.

23. Remove the special tool or mechanic’s stopper tool between the axle holder (23) and lock nut (26) while applying pressure to the fork cap.

NOTICE

Be careful not to damage the lock nut and fork center bolt hole.

24. Remove the fork damper assembly (28) from the fork assembly (29).
 - Remove the fork from the vise.
 - Remove the fork spring (30) from the fork.

Damper Oil Change

1. Loosen the fork cap (1) by turning the fork damper (2) using the lock nut wrench (3).
2. Remove the fork cap assembly (4) from the fork damper (2).

Be careful not to damage the fork cap bushing. Do not disassemble the fork cap assembly. Replace the fork cap as an assembly if it is damaged.

3. Empty the fork oil from the fork damper (2) by pumping the damper rod several times.

4. Clean the fork cap and fork damper threads.

5. Extend the fork damper piston rod to maximum. Pour the recommended fork oil into the fork damper.

Recommended Oil: Pro Honda HP Fork Oil 5 W or equivalent

Recommended Amount: 6.0 US oz (178 cc)

6. Pump the fork damper piston rod (6) slowly several times to bleed the air from the fork damper (2).

7. Extend the fork damper piston rod to maximum. Adjust the oil level of the fork damper (2) as shown.

Oil Level: 1.65 – 1.85 in (42 – 47 mm)

8. Apply fork oil to the bushing and new O-ring on the fork cap assembly (4). Extend the fork damper piston rod to maximum, holding it, install the fork cap assembly to the fork damper (2).

Be careful not to damage the fork cap bushing. If it is difficult to install the fork cap assembly, the fork damper oil level might be higher than standard oil level. Inspect the fork damper oil level again.

Adjustments for Competition
Front Suspension Adjustments

9. Tighten the fork cap (1) while holding the cut out of the fork damper (2) using the lock nut wrench (3) to the specified torque:
25 lbf-ft (34 N·m, 3.5 kgf-m)

10. Hold the fork damper (2) in an upright position and pump the fork piston rod (6) to 3.9 in (100 mm) slowly several times.

11. Screw in the lock nut (7) to the fork damper piston rod (6) fully.

12. Blow the extra oil off to the fork damper (2) spring chamber (8) by pumping the fork damper piston rod to full stroke.

13. Drain the extra oil from the fork damper spring chamber (8) oil hole (9).

By doing this procedure, about 17 cm³ of fork fluid will be drained from the damper spring chamber through the oil hole and cause 178 cm³ of fork fluid to be left in the chamber.

14. Blow out the oil from the fork damper spring chamber using compressed air to the oil hole. Wipe the oil completely off the fork damper.

15. If you cannot use compressed air, remove the pressure release screw (10) on the fork cap (11). Hold the fork damper up side down for 10 minutes and drain the oil from the fork damper spring chamber.
Front Suspension Adjustments

Fork Assembly

1. Drain the fork oil from the outer tube/slider (1) by placing it upside down. (About 7 cc of fork oil will be left in the outer tube/slider when it is left inverted for about 20 minutes at 20°C/68°F)

2. Tighten the lock nut (2) fully and measure the thread length (A) as shown.

 Standard: 0.43 – 0.51 in (11 – 13 mm)

 Wipe the oil completely off the fork damper.

3. Wipe the oil completely off the fork spring (3).
 Install the fork spring.
 Install the fork damper (4) to the outer tube/slider (1).

Amount of fork oil left in the fork (without damper and spring)

<table>
<thead>
<tr>
<th>Unit: cc</th>
<th>5</th>
<th>10</th>
<th>20</th>
<th>35</th>
<th>55</th>
<th>85</th>
<th>145</th>
</tr>
</thead>
<tbody>
<tr>
<td>30/86</td>
<td>7.1</td>
<td>5.9</td>
<td>4.7</td>
<td>4.2</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>20/68</td>
<td>10.6</td>
<td>8.2</td>
<td>7.1</td>
<td>5.9</td>
<td>5.6</td>
<td>4.7</td>
<td>4.7</td>
</tr>
<tr>
<td>10/50</td>
<td>11.8</td>
<td>8.3</td>
<td>7.2</td>
<td>6.2</td>
<td>5.8</td>
<td>4.9</td>
<td>4.8</td>
</tr>
<tr>
<td>0/32</td>
<td>12.9</td>
<td>10.6</td>
<td>9.4</td>
<td>8.2</td>
<td>7.9</td>
<td>7.1</td>
<td>5.9</td>
</tr>
</tbody>
</table>

Graphs

- Amount of fork oil left in the fork (without damper and spring) vs. Inverted time (minutes)
- Amount of fork oil left in the fork (without damper and spring) vs. Temperature (°C/°F)
Front Suspension Adjustments

4. Set the lower end (axle holder) of the slider in a vise with a piece of wood or soft jaws to avoid damage.

NOTICE
Do not overtighten the axle holder.

5. Temporarily install the fork damper to the fork.
 Push out the fork damper piston rod from the axle holder of the slider by pushing the fork damper.
 Apply pressure to the fork damper and insert the special tool or mechanic’s stopper tool (5) between the axle holder and lock nut (2).
 Measure the thread length again.
 Standard: 0.43 – 0.51 in (11 – 13 mm)

6. Install the push rod (6) into the piston rod until it stops.
 Check the push rod installation by turning the push rod right and left.

7. Install a new O-ring (7) to the fork center bolt (8).
 Install the fork center bolt to the fork damper piston rod aligning the center bolt adjusting rod (9) with the push rod. Tighten the center bolt fully by hand.

8. Measure the length of the lock nut (2) and center bolt (8) clearance.
 Standard: 0.06 – 0.08 in (1.5 – 2.0 mm)
 If the clearance is out of specification, check the lock nut and center bolt installation.

9. Tighten the lock nut (2) to the fork center bolt (8) closely by hand. Tighten the lock nut to the specified torque:
 16 lbf·ft (22 N·m, 2.2 kgf·m)

10. Apply fork oil to the fork center bolt (8) O-ring.
 Remove the special tool or mechanic’s stopper tool while applying pressure to the fork damper.
 Install the center bolt to the axle holder and tighten it to the specified torque:
 51 lbf·ft (69 N·m, 7.0 kgf·m)

11. Measure the length between the axle holder and outer tube.
 Standard: 317 ± 2 mm
12. Compare the length (10) at assembly and at disassembly. They should be the same length.
 If the length at assembly is longer than at disassembly, check the center bolt and lock nut installation.
13. Pour the recommended fork oil (11) into the outer tube/slider (1).

Recommended Oil:
Pro Honda HP Fork Oil 5 W or equivalent.

Fork Oil Capacity:

<table>
<thead>
<tr>
<th>Fork Oil Type</th>
<th>Standard (0.45 kgf/mm) Fork Spring</th>
<th>Optional Softer (0.43 kgf/mm) Fork Spring</th>
<th>Optional Stiffer (0.47 kgf/mm) Fork Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard oil capacity</td>
<td>12.5 US oz (371 cm³)</td>
<td>12.4 US oz (368 cm³)</td>
<td>12.6 US oz (374 cm³)</td>
</tr>
<tr>
<td>Maximum oil capacity</td>
<td>14.1 US oz (417 cm³)</td>
<td></td>
<td>14.2 US oz (420 cm³)</td>
</tr>
<tr>
<td>Minimum oil capacity</td>
<td>10.9 US oz (321 cm³)</td>
<td></td>
<td>11.0 US oz (324 cm³)</td>
</tr>
</tbody>
</table>

Slightly stiffer as it nears full compression.
Slightly softer as it nears full compression.

Be sure the oil capacity is the same in both fork legs.

14. Install the fork damper as described in *Damper Oil Change* (page 104-106).
Front Suspension Adjustments

15. Check that the O-ring (12) on the fork damper assembly (4) is in good condition. Apply the recommended fork oil to the O-ring.

16. Temporarily thread the fork damper (4) into the outer tube (1). Insert both fork legs into the fork clamps. Align the groove in the outer tube with the top surface of the upper fork clamp. If installing the optional 20 inch wheel, align the top of the outer tube (not the top of the fork cap) with the top surface of the upper fork clamp. Temporarily tighten the fork lower pinch bolts (13) and then tighten the fork damper (4) to the specified torque using a special tool: 25 lbf·ft (34 N·m, 3.5 kgf·m)

For ease of releasing air pressure after the forks are installed, loosen the lower pinch bolts and position the outer tubes so that the pressure release screws are in front of the rebound damping adjusters.

17. Tighten the fork lower pinch bolts (13) to the specified torque:
 14 lbf-ft (20 N·m, 2.0 kgf·m)

18. Tighten the fork upper pinch bolts (14) to the specified torque:
 16 lbf-ft (22 N·m, 2.2 kgf·m)

NOTICE

Over-tightening the pinch bolts can deform the outer tubes. Deformed outer tubes must be replaced.
19. Clean the threads of the fork protector (15) bolts and axle holder thoroughly. Apply locking agent to the bolt threads. Install the fork protector and tighten the bolts to the specified torque:
5.1 lbf-ft (7 N·m, 0.7 kgf·m)

![Fork Protector](image1)

20. Clean the surfaces where the axle and axle clamps contact each other. Install the left and right side collars into the wheel hub. Insert the front axle shaft through the wheel hub from the right side. Make sure the front axle shaft is seated firmly onto the left fork leg clamp inner surface. Tighten the axle nut (16) to the specified torque:
65 lbf-ft (88 N·m, 9.0 kgf-m)

![Axle Nut](image2)

21. Align the brake caliper (17) and hose with the left fork leg, making sure that the brake hose is not twisted.

22. Clean the threads of the caliper mounting bolts (18) and brake caliper thoroughly. Apply locking agent to the bolt threads. Install the brake caliper on the slider and tighten the caliper mounting bolts to the specified torque:
22 lbf-ft (30 N·m, 3.1 kgf-m)

WARNING
An improperly routed brake hose may rupture and cause a loss of braking efficiency. Route the hose carefully.

NOTICE
Fit the brake caliper over the disc, taking care not to damage the brake pads.

![Brake Caliper](image3)

(15) fork protector
(16) axle nut
(17) caliper
(18) caliper mounting bolts

(cont’d)
Front Suspension Adjustments

23. Install the handlebar (19), mounting rubbers (20), washers and handlebar holder nuts (21) and tighten the handlebar holder nuts to the specified torque:
 33 lbf-ft (44 N-m, 4.5 kgf-m)

24. Install the number plate (22) by aligning its hole with the tab (23) on the steering stem.

25. Install and tighten the number plate bolt (24). Install the handlebar pad (25).

26. With the front brake applied, pump the fork up and down several times to seat the axle and check front brake operation.

27. Tighten the left axle pinch bolts (26) alternately first. While keeping the forks parallel, alternately tighten the right axle pinch bolts to the specified torque:
 14 lbf-ft (20 N-m, 2.0 kgf-m)

28. Clean the threads of the disk cover bolts and axle holder thoroughly. Apply locking agent to the disc cover bolts threads. Install the disc cover (27) and tighten the disc cover bolts (28) to the specified torque:
 9 lbf-ft (13 N-m, 1.3 kgf-m)

29. Turn the rebound damping adjusters back to their original settings.

NOTICE

To avoid damage when torquing the axle pinch bolts, be sure the axle is seated firmly onto the left fork leg clamp inner surface.
Rear Suspension Adjustments

The rear suspension can be adjusted for the rider’s weight and riding conditions by changing the spring pre-load and the rebound and compression damping.

The rear shock absorber assembly includes a damper unit that contains high pressure nitrogen gas. Do not attempt to disassemble, service, or dispose of the damper; see your Honda dealer. The instructions found in this owner’s manual are limited to adjustments of the shock assembly only.

Puncture or exposure to flame may also result in an explosion, causing serious injury. Service or disposal should only be done by your authorized Honda dealer or a qualified mechanic, equipped with the proper tools, safety equipment and the official Honda Service Manual.

If your CRF is new, put enough part-throttle break-in time (about one hour) on it to ensure that the suspension has worked in.

Rear Suspension Spring Pre-Load

Pre-load should be adjusted when the engine is cold because it is necessary to remove the muffler (page 86).

An optional pin spanner is available for turning the lock nut and adjusting nut to adjust spring pre-load.

1. Place a workstand under the engine to raise the rear wheel off the ground.
2. Loosen the connecting tube clamp screw and remove the rear subframe’s three mounting bolts, then remove the subframe. See page 32.
3. Check that the spring preload is adjusted to the standard length. Adjust as necessary by loosening the lock nut (1) and turning the adjusting nut (2). Each complete turn of the adjuster nut changes the spring length by 1/16 in (1.5 mm).

To increase spring pre-load:
Loosen the lock nut with the optional pin spanner (3) and turn the adjusting nut to shorten the spring length (4). Do not shorten to less than: 8.5 in (215 mm)

To decrease spring pre-load:
Loosen the lock nut with the optional pin spanner (3) and turn the adjusting nut to increase the spring length (4). Do not increase to more than: 10.4 in (264 mm)

Each turn of the adjuster changes spring length and spring pre-load. One turn equals: spring length/spring pre-load: 0.06 in (1.5 mm) / 17.5 lbs (7.95 kg)

Pin spanners should be used for turning the lock nut and adjusting nut. See page 147 for optional pin spanners.

Spring pre-load length (Standard spring)
Standard: 10.29 in (261.3 mm)
Min. : 9.88 in (251 mm)

Spring pre-load length (Optional spring)
Min. (Softer, 5.1 kgf/mm): 9.92 in (252 mm)
Min. (Stiffer, 5.5 kgf/mm): 9.80 in (249 mm)
Min. (Stiffer, 5.7 kgf/mm): 9.88 in (251 mm)
Rear Suspension Adjustments

Rear Suspension Damping

Compression Damping
Compression damping may be adjusted in two stages with separate adjusters.

The high speed damping adjuster (1) is effective when damping adjustment is desired for high speed operation. The low speed damping adjuster (2) should be used when damping adjustment is desired at relatively low speeds.

- Both the high and low speed compression damping can be increased by turning the appropriate adjuster clockwise.
- Adjust the high speed compression adjuster in 1/12 turn increments.

High Speed Damping:
The high speed damping can be adjusted by turning the hexagonal portion of the compression adjuster.

To adjust to the standard position:
1. Turn the adjuster clockwise until it will no longer turn (lightly seats). This is the full hard setting.
2. Turn the adjuster counterclockwise 1-3/4—2-1/4 turns and the punch marks are aligned.

Low Speed Damping:
The low speed damping can be adjusted by turning the center screw of the compression adjuster.

The low speed compression adjuster has 13 positions or more.

Turning the adjuster one full turn clockwise advances the adjuster four positions.

To adjust to the standard position:
1. Turn the adjuster clockwise until it no longer turn (lightly seat). This is the full hard setting.
2. Turn the adjuster counterclockwise 7 clicks and the punch marks are aligned.

Rebound Damping:
The rebound damping adjuster (3) is located at the lower end of the shock absorber.

It has 17 positions or more. Turning the adjuster one full turn advances the adjuster 9 positions.

- Rebound damping can be increased by turning the adjuster clockwise.
Rear Suspension Race Sag

Setting the proper race sag (ride height) is very important for competition use.

Race sag refers to the amount of rear wheel travel used by your CRF at rest, ready to ride, with you on the seat. As a general rule of thumb, the race sag dimension should be about one-third of the maximum travel.

On your CRF, ride height is changed by adjusting the rear suspension spring pre-load.

Spring Pre-load & Race Sag Adjustment
The following adjustment procedure establishes the correct starting point for any suspension tuning — the proper rear spring pre-load adjustment for your specific needs.

Your CRF should be at normal racing weight, including fuel and transmission oil. You should be wearing all your normal protective apparel. You will need two helpers.

To calculate the proper adjustment, it is necessary to measure between two fixed points — from the top of the most rearward point of the subframe down to the machined edge at the rear of the wingarm, as illustrated — for three different situations:

unloaded: motorcycle on optional workstand with rear suspension fully extended, no rider.
loaded with rider: motorcycle on ground, with rider.
loaded without rider: motorcycle on ground, without rider

1. Support your motorcycle on a workstand with the rear wheel off the ground.
2. Measure the unloaded dimension.

3. Measure the loaded with rider dimension. Remove the workstand. With two helpers available, sit as far forward as possible on your CRF’s seat, wearing your riding apparel. Ask one helper to steady your CRF perfectly upright so you can put both feet on the pegs. Bounce your weight on the seat a couple of times to help the suspension overcome any situation and settle to a good reference point.

Ask the other helper to measure the loaded with rider dimension.

4. Calculate the race sag dimension.
To do this, subtract the loaded with rider dimension (step 3) from the unloaded dimension (step 2).
Standard Race Sag: 3.9 in (100 mm)

Adjust spring pre-load as necessary to obtain the desired handling results.
Decreasing the race sag dimension (example: 3.5 in, 90 mm) improves turning ability for tight terrain at the cost of slightly reduced straight line stability.
Increasing the race sag dimension (example: 4.3 in, 110 mm) may improve stability on faster terrain with less turns, but will reduce turning performance slightly and may upset the balance between the front and rear suspension, producing a harsher ride. This will happen if the adjustment shifts the effective wheel travel toward the more progressive end of its range.

5. Measure the loaded without rider dimension. Do this with your motorcycle set at the standard race sag.

Example:
Unloaded = 23.6 in (600 mm)
– Loaded = 19.7 in (500 mm)
Race Sag = 3.9 in (100 mm)

(continued)
Rear Suspension Adjustments

6. Calculate the free sag dimension.
 To do this, subtract the loaded without rider dimension (step 5) from the unloaded dimension (step 2).
 Free sag indicates the distance your rear suspension should sag from the weight of the sprung portion of your CRF.
 With the spring pre-load set to obtain the proper race sag, the rear suspension should sag: 0.39 to 0.98 in (10 to 25 mm)
 If the rear of your CRF sags more than 0.98 in (25 mm) from its own weight, the spring is too stiff for your weight. It is not compressed enough, even though you have the proper race sag adjustment. As a result, the rear suspension will not extend as far as it should.

Spring Rates
If you are lighter or heavier than the average rider and cannot set the proper ride height without altering the correct spring pre-load, consider an aftermarket shock absorber spring.

A spring that is too soft for your weight forces you to add excessive spring pre-load to get the right race sag and, as a result, the rear end of the motorcycle is raised. This can cause the rear wheel to unload too much in the air and top out as travel rebounds. The rear end may top out from light braking, or kick sideways over lips and square-edged terrain. It may even top-out when you dismount your CRF.

Because of the great absorption quality of the shock bumper rubber, it may be difficult for you to notice when your CRF’s suspension is bottoming. Some riders may think the damping or perhaps the leverage ratio is too harsh. In reality, the problem is most likely insufficient spring pre-load or a spring that is too soft. Either situation prevents utilizing the full travel.

Keep in mind that a properly adjusted suspension system may bottom slightly every few minutes at full speed. Adjusting the suspension to avoid this occasional bottoming may cost more in overall suspension performance than it is worth.

A spring that is too firm for your weight will not allow the rear tire to hook up under acceleration and will pass more bumps on to you.
Suspension Adjustments for Track Conditions

Soft Surface
On soft ground, sand, and especially mud, consider increasing compression damping front and rear.

Sand often requires a bit more rebound damping to minimize rear end kick. Although sand bumps are usually larger, there’s more distance between them, giving the shock more time to recover.

You may want a little bit stiffer front suspension for sand tracks to help keep the front end up and improve straight-line stability.

In a muddy event, stiffer aftermarket springs front and rear may help, especially if you are heavier than the average rider. Your CRF may be undersprung because of the added weight of the clinging mud. This additional weight may compress the suspension too much and affect traction.

Hard Surface
For a fast, hard track with no large jumps, you can probably run the same spring as normal, but run softer damping both ways-compression and rebound. If you run softer rebound damping, the wheel will follow the rough ground and small bumps much better, and you will hook up better. With a lot of rebound damping, the wheel returns very slowly and doesn’t contact the ground quickly enough after each bump. The result is a loss of traction and slower lap times.
Suspension Adjustment Guidelines

Follow the procedures described below to accurately adjust your CRF, using the methods described on pages 94 - 108. Remember to make all adjustments in one-click increments. Test ride after each adjustment.

Front Suspension Adjustment
Adjustments for Type of Track

<table>
<thead>
<tr>
<th>Track Type</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard-surfaced track</td>
<td>Adjust to a stiffer position. Example: – Turn the compression damping adjuster to a stiffer position. – Install the optional stiff spring. (Adjust compression damping to a softer position and rebound damping to a harder position at this time.)</td>
</tr>
<tr>
<td>Sand track</td>
<td>Adjust to a stiffer position because mud build-up increases your CRF’s weight. Example: – Turn the compression damping adjuster to a stiffer setting. – Install the optional stiff spring.</td>
</tr>
<tr>
<td>Mud track</td>
<td>Adjust to a stiffer position because mud build-up increases your CRF’s weight. Example: – Turn the compression damping adjuster to a stiffer setting. – Install the optional stiff spring.</td>
</tr>
</tbody>
</table>

Adjustments for Too Soft/Stiff Damping

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial travel too soft: • Steering is too quick. • Front end darts while cornering or riding in a straight line.</td>
<td>– Test stiffer compression damping adjustments in one-click increments. – Test stiffer rebound damping in one-click increments.</td>
</tr>
<tr>
<td>Middle travel too soft: • Front end dives when cornering.</td>
<td>If suspension isn’t stiff in initial travel: – Test stiffer compression damping adjustments in one-click increments. If initial travel becomes stiff because of the above adjustment: – Reduce the rebound damping in one-click increments. – Test softer compression damping adjustments in one-click increments. If that doesn’t solve the problem, install the optional stiff spring.</td>
</tr>
<tr>
<td>Final travel too soft: • Bottoms on landings. • Bottoms on large bumps, especially downhill bumps.</td>
<td>If initial and middle travel aren’t stiff: – Test stiffer compression damping adjustments in one-click increments. If initial and middle travel are stiff: – Install the optional stiff spring. If initial travel is still stiff after installing the optional stiff spring: – Test soft compression damping adjustments in one-click increments. If initial travel is still stiff after installing the optional stiff spring: – Test stiffer compression damping adjustments in one-click increments. If final travel is still soft after installing the optional stiff spring: – Increase the fork oil level in increments of 0.2 oz (5 cc).</td>
</tr>
<tr>
<td>Entire travel too soft: • Front end shakes. • Fork bottoms over any type of terrain.</td>
<td>– Install the optional stiff spring. – Test stiffer compression damping adjustments in one-click increments. – Increase rebound damping in one-click increments.</td>
</tr>
</tbody>
</table>
Suspension Adjustment Guidelines

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Action</th>
</tr>
</thead>
</table>
| Initial travel too stiff: | • Stiff on small bumps while riding at full throttle in a straight line.
• Stiff on small cornering bumps.
• Front end wanders while riding at full throttle in a straight line.
| – Test softer compression damping adjustments in one-click increments.
– Reduce the rebound damping adjustments in one-click increments.
– Check for dirt in the dust seals. Check the fork oil for any contamination.
If the front end dives while cornering, reduce the rebound damping in one click increments.
If that doesn’t solve the problem, install the optional stiff spring.
If the stiff spring makes the suspension too stiff over the full range of travel: test softer compression damping adjustments in one-click increments until the desire compression damping for initial travel is obtained. |
| Middle travel too stiff: | • Stiff on bumps when cornering.
• Front end wanders when cornering.
• Stiff suspension on bumps, especially downhill bumps.
• While braking, front end dives during initial travel, then feels stiff.
| If initial travel isn’t stiff:
– Test stiffer compression damping adjustments in one-click increments. (This should produce smooth fork action from initial to middle travel.)
If initial and middle travel is stiff:
– Test softer compression damping adjustments in one-click increments.
– Reduce the rebound damping in one-click increments. |
| Final travel too stiff: | • Doesn’t bottom on landings, but feels stiff.
• Stiff on large bumps, especially downhill bumps.
• Stiff on large bumps when cornering.
| If initial and middle travel aren’t stiff:
– Test stiffer compression damping adjustments in one-click increments. (This should produce smooth fork action from initial to middle travel.)
If final travel is still stiff after the above adjustment, or
If initial and middle travel becomes stiff:
– Install the optional stiff spring.
– Test softer compression damping adjustments in one-click increments.
If the entire travel feels stiff after the above adjustment:
– Test softer compression damping adjustments in one-click increments until the desired initial travel compression damping is obtained.
– Lower the oil level by 0.2 oz (5 cc). |
| Entire travel too stiff: | • Stiff suspension on any type of terrain.
| – Test softer compression damping adjustments in one-click increments.
– Reduce the rebound damping in one-click increments.
– Lower the oil level by 0.2 oz (5 cc). |
Suspension Adjustment Guidelines

Rear Suspension Adjustment
Adjustments for Type of Track

<table>
<thead>
<tr>
<th>Track Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard-surfaced track</td>
<td>Begin with the standard settings. If the suspension is too stiff/soft, adjust according to the chart below.</td>
</tr>
<tr>
<td>Sand track</td>
<td>Lower the rear end (to improve front wheel stability) by increasing Race Sag (reduce spring preload). Example: – Turn the compression damping adjuster and, especially, rebound damping adjuster to a stiffer setting. – Increase standard Race Sag (+0.2 to 0.4 in/5 to 10 mm).</td>
</tr>
<tr>
<td>Mud track</td>
<td>Adjust to a stiffer position because mud build-up increases your CRF’s weight. Example: – Adjust the compression and rebound damping adjusters to stiffer settings. – Install the optional stiff spring. – Reduce standard Race Sag (–0.2 to 0.4 in/5 to 10 mm).</td>
</tr>
</tbody>
</table>

Symptoms and Adjustment
- Always begin with the standard settings.
- Turn the low speed compression and rebound adjusters in one-click increments, and the high speed compression adjuster in 1/6 turn increments at a time. Adjusting two or more clicks or turns at a time may cause you to pass over the best adjustment. Test ride after each adjustment.
- If, after setting, the suspension feels unusual, find the corresponding symptom in the table and test stiffer or softer compression and/or rebound damping adjustments until the correct settings are obtained as described.

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stiff suspension</td>
<td></td>
</tr>
<tr>
<td>Suspension feels stiff on small bumps</td>
<td>1. Test softer low speed compression adjustment. 2. If it still feels stiff, further test softer low and high speed compression adjustments simultaneously.</td>
</tr>
<tr>
<td>Suspension feels stiff on large bumps</td>
<td>1. Test softer high speed compression adjustment. 2. If it still feels stiff, further test softer low and high speed compression adjustments simultaneously.</td>
</tr>
<tr>
<td>Entire travel too stiff</td>
<td>1. Test softer high and low speed compression adjustments and rebound adjustment simultaneously. 2. If it still feels stiff, replace the spring with a softer spring (optional) and begin with the standard settings to softer settings.</td>
</tr>
<tr>
<td>Soft suspension</td>
<td></td>
</tr>
<tr>
<td>Entire travel too soft</td>
<td>1. Test stiffer high and low speed compression adjustments simultaneously. 2. If it still feels soft, replace the spring with a harder spring (optional) and begin with the standard settings to stiffer setting.</td>
</tr>
<tr>
<td>Rear end sways</td>
<td>1. Test stiffer high and low speed compression adjustments and rebound adjustment to stiffer settings simultaneously.</td>
</tr>
<tr>
<td>Suspension bottoms</td>
<td></td>
</tr>
<tr>
<td>Suspension bottoms at landing after jumping</td>
<td>1. Test stiffer high speed compression adjustment. 2. If it still bottoms, test stiffer high and low speed compression adjustments, and replace the spring with a harder spring (optional) if necessary.</td>
</tr>
<tr>
<td>Suspension bottoms after landing</td>
<td>1. Test stiffer low speed compression adjustment. 2. If it still bottoms, test stiffer high and low speed compression adjustments, and replace the spring with a harder spring (optional) if necessary.</td>
</tr>
<tr>
<td>Suspension bottoms after end of continuous bumps</td>
<td>1. Test softer rebound damping adjustment. 2. If it still bottoms, test stiffer high and low speed compression adjustments and softer rebound damping adjustment, and replace the spring with a harder spring (optional) if necessary.</td>
</tr>
</tbody>
</table>
The carburetor on your CRF should perform suitably with the standard recommended settings under average load, climatic, and barometric conditions. However, to fine tune the engine’s power output, the carburetor may require adjustments for specific competition needs.

Optional main jets and slow jets are available for your CRF. See your Honda dealer.

Any engine or airbox modifications or the use of an aftermarket exhaust system may require jetting changes.

Carburetor Components

Cold Start Circuit
A very rich mixture must be delivered to the cylinder when cold engine is being started. When the choke knob (1) is pulled out, fuel is metered by the starter jet (2) and is mixed with air from the air passage (3) (located above the throttle valve (4)) to provide a rich mixture for starting. The mixture discharges through the orifice (5) into the cylinder.

1. choke knob
2. starter jet
3. air passage
4. throttle valve
5. orifice

Hot Start Circuit
A lean mixture must be delivered to the cylinder when a hot engine is being started. When the hot start lever is pulled back, the hot start valve (1) opens, allowing air to be supplied to the main bore (2) through the hot start air passage (3). This extra air enters the air-fuel mixture from the slow circuit resulting in a lean condition.

1. hot start valve
2. main bore
3. hot start air passage
Carburetor Adjustments & Tuning Tips

Accelerator Pump Circuit
The accelerator pump circuit operates when the throttle is opened. As the throttle valve (1) opens, the pump rod (2) depresses the diaphragm (3). At this time, the inlet check valve (4) is shut resulting in a sharp increase in pressure in the pump chamber (5). The outlet check valve (6) then opens, supplying fuel to the main bore via the accelerator nozzle (7).

Slow Circuit
Fuel is metered by the slow jet (1) and mixed with air from the air passage (2). The mixture enters the venturi through the bypass (3) and pilot outlet (4) that has been metered by the pilot screw (5).

Main Circuit
Fuel is metered by the main jet (1), jet needle (2) and needle jet (3). It is then mixed with air coming from the air jet (4) and enters the venturi past the needle jet.

Baffle Plate
The baffle plate (5) prevents foaming of fuel or abnormal fuel level around the main jet.

Float Bowl
The float (6) and float valve (7) operate to maintain a constant level of fuel in the float bowl.
Carburetor Adjustments & Tuning Tips

Carburetor Circuit Functions

The carburetor has several major circuits, each providing the fuel/air mixture over a given portion of throttle valve opening.

These major circuits overlap as shown below.

- **Main Jet**
- **Jet Needle (Tapered Section)**
- **Jet Needle (Straight Section)**
- **Slow Jet**
- **Pilot Screw**

Slow Jet and Pilot Screw

The slow jet and pilot screw affects fuel/air ratio over fully closed to 1/4 throttle. By changing the position of the clip (2) in its groove, you can improve acceleration at medium low and medium speed.

- If the engine blubbers (rich) exiting a corner, turn the pilot screw clockwise to lean the mixture.
- If the engine surges (lean) exiting a corner, turn the pilot screw counterclockwise to richen the mixture.

The minimum to maximum range of pilot screw adjustment is 1/2 to 2 1/2 turns out from the lightly seated position.

If you exceed 2 1/2 turns out, the next larger slow jet is needed.

If you are under 1/2 turns out, the next smaller slow jet is needed.

Carburetor Removal

1. Turn the fuel valve OFF.
2. Drain the remaining fuel in the float bowl by removing the float bowl plug (1).

WARNING

Gasoline is highly flammable and explosive. You can be burned or seriously injured when handing fuel.

- Stop the engine and keep heat, sparks and flame away.
- Handle fuel only outdoors.
- Wipe up spills immediately.

3. Install the float bowl plug.

(1) float bowl plug

Honda carburetor jet sizes are numbered in increments of 2 or 3. When changing the main jet size, increase or decrease it gradually until the desired jetting is obtained. Because Honda jet size numbers do not correspond with other carburetor manufacturer’s jet size numbers, use only Honda jets.

Jet Needle

The jet needle controls fuel/air mixture over fully closed to 3/4 throttle. The straight section (1) affects throttle response at smaller throttle openings. By changing the position of the clip (2) in its groove, you can improve acceleration at medium low and medium speed.

Carburetor Removal

1. Turn the fuel valve OFF.
2. Drain the remaining fuel in the float bowl by removing the float bowl plug (1).

WARNING

Gasoline is highly flammable and explosive. You can be burned or seriously injured when handing fuel.

- Stop the engine and keep heat, sparks and flame away.
- Handle fuel only outdoors.
- Wipe up spills immediately.

3. Install the float bowl plug.

(1) float bowl plug

Honda carburetor jet sizes are numbered in increments of 2 or 3. When changing the main jet size, increase or decrease it gradually until the desired jetting is obtained. Because Honda jet size numbers do not correspond with other carburetor manufacturer’s jet size numbers, use only Honda jets.

Jet Needle

The jet needle controls fuel/air mixture over fully closed to 3/4 throttle. The straight section (1) affects throttle response at smaller throttle openings. By changing the position of the clip (2) in its groove, you can improve acceleration at medium low and medium speed.
Carburetor Adjustments & Tuning Tips

4. Disconnect the fuel line (2) from the fuel valve (3).
5. Remove the fuel tank (page 30).
6. Remove the sub-frame (page 32).
7. Loosen the intake band screw (4).

8. Disconnect the throttle sensor connector (5).
9. Remove the carburetor.
10. Remove the hot start cable holder (6).
11. Disconnect the rear suspension (7) upper mounting nut (8).
12. Remove the throttle drum cover bolt (9) and throttle drum cover (10).
13. Loosen the lock nut (11), adjusters (12) and disconnect the throttle cables (13) from the throttle drum (14). Remove the carburetor to the rearward from the frame.
Carburetor Disassembly

1. Pull up the cable clamp (1) and remove the carburetor top bolts (2). Then remove the carburetor top (3).

2. Remove the jet needle holder (4) and jet needle (5) from the throttle valve (6).

3. Remove the link arm set screw (7). When installing the link arm set screw, apply a locking agent to the link arm set screw threads.

4. Remove the throttle valve (8), throttle valve roller (9) and floating valve (10).

When installing the floating valve (10) onto the throttle valve (8) make sure the floating valve’s flat side faces out and the hole (11) faces down.
Carburetor Adjustments & Tuning Tips

5. Remove the accelerator pump cover screws (12) and accelerator pump cover (13).

6. Remove the D-ring (14), O-ring (15) spring (16) and diaphragm (17). Clean the diaphragm. When installing the D-ring into the accelerator pump cover (13) make sure the D-rings flat side faces down, away from the float bowl (18).

7. Remove the holder screw (19), throttle stop screw holder (20), float bowl screws (21), tube guides (22) and float bowl (18).

8. Remove the pump rod (23). Clean the pump rod and rod passage (24). Install the pump rod into the link lever (25). Push the rod forcibly into the link lever until it snaps into place.

9. Measure the float level (26) with the float level gauge (27) during float tab just contacting the float valve and the carburetor intake (28) facing up. The float level should be 0.31 in (8.0 mm). Adjust the float level by bending the float tab carefully.

10. Remove the leak jet (29) from the float bowl (18). Clean the leak jet.
Carburetor Assembly

To assemble, reverse the disassembly procedures. To install the carburetor, reverse the removal procedures.

- After installing the carburetor, adjust the throttle cable (1) free play and hot start cable (2) free play.
- After installing the carburetor, check the air vent hoses (3) and overflow hose (4) for kinking or pinching and correct routing as necessary.

(1) throttle cables
(2) hot start cable
(3) air vent hoses
(4) overflow hose
Carburetor Adjustments & Tuning Tips

Standard Tuning Recommendations

For the following recommendations to be accurate, you must use the standard settings as a baseline. Also, don’t change any of the settings until you’ve determined what changes are necessary.

<table>
<thead>
<tr>
<th>Adjustment</th>
<th>Standard settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilot screw opening</td>
<td>1–3/4 turns out</td>
</tr>
<tr>
<td>Slow jet</td>
<td>#42</td>
</tr>
<tr>
<td>Jet needle</td>
<td>NCYQ</td>
</tr>
<tr>
<td>Needle clip position</td>
<td>3rd groove</td>
</tr>
<tr>
<td>Main jet</td>
<td>#172</td>
</tr>
<tr>
<td>Float level</td>
<td>0.31 in (8.0 mm)</td>
</tr>
<tr>
<td>Identification number</td>
<td>FCR01B</td>
</tr>
</tbody>
</table>

Adjustments for Altitude & Temperature

All jetting recommendations are based on standard jetting with an unmodified engine. The following conditions can affect the fuel mixture.

<table>
<thead>
<tr>
<th>Altitude to</th>
<th>FAHR.</th>
<th>-21° to 0°</th>
<th>-1° to 20°</th>
<th>19° to 40°</th>
<th>39° to 60°</th>
<th>59° to 80°</th>
<th>79° to 100°</th>
<th>99° to 120°</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,000 ft</td>
<td>PS:</td>
<td>1 3/4</td>
<td>1 3/4</td>
<td>1 1/2</td>
<td>1 1/2</td>
<td>1 1/2</td>
<td>1 1/2</td>
<td>1 1/2</td>
</tr>
<tr>
<td></td>
<td>SJ:</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>JN:</td>
<td>NCYQ</td>
<td>NCYQ</td>
<td>NCYQ</td>
<td>NCYQ</td>
<td>NCYQ</td>
<td>NCYQ</td>
<td>NCYQ</td>
</tr>
<tr>
<td></td>
<td>NC:</td>
<td>3rd</td>
<td>3rd</td>
<td>2nd</td>
<td>2nd</td>
<td>2nd</td>
<td>2nd</td>
<td>2nd</td>
</tr>
<tr>
<td></td>
<td>MJ:</td>
<td>172</td>
<td>170</td>
<td>170</td>
<td>168</td>
<td>168</td>
<td>168</td>
<td>165</td>
</tr>
<tr>
<td>7,500 ft</td>
<td>PS:</td>
<td>1 3/4</td>
<td>1 3/4</td>
<td>1 3/4</td>
<td>1 1/2</td>
<td>1 1/2</td>
<td>1 1/2</td>
<td>1 1/4</td>
</tr>
<tr>
<td></td>
<td>SJ:</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>JN:</td>
<td>NCYQ</td>
<td>NCYQ</td>
<td>NCYQ</td>
<td>NCYQ</td>
<td>NCYQ</td>
<td>NCYQ</td>
<td>NCYQ</td>
</tr>
<tr>
<td></td>
<td>NC:</td>
<td>3rd</td>
<td>3rd</td>
<td>3rd</td>
<td>2nd</td>
<td>2nd</td>
<td>2nd</td>
<td>2nd</td>
</tr>
<tr>
<td></td>
<td>MJ:</td>
<td>172</td>
<td>170</td>
<td>170</td>
<td>168</td>
<td>168</td>
<td>168</td>
<td>165</td>
</tr>
<tr>
<td>7,499 ft</td>
<td>PS:</td>
<td>1 3/4</td>
<td>1 3/4</td>
<td>1 3/4</td>
<td>1 1/2</td>
<td>1 1/2</td>
<td>1 1/2</td>
<td>1 1/4</td>
</tr>
<tr>
<td></td>
<td>SJ:</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>JN:</td>
<td>NCYQ</td>
<td>NCYQ</td>
<td>NCYQ</td>
<td>NCYQ</td>
<td>NCYQ</td>
<td>NCYQ</td>
<td>NCYQ</td>
</tr>
<tr>
<td></td>
<td>NC:</td>
<td>3rd</td>
<td>3rd</td>
<td>3rd</td>
<td>2nd</td>
<td>2nd</td>
<td>2nd</td>
<td>2nd</td>
</tr>
<tr>
<td></td>
<td>MJ:</td>
<td>172</td>
<td>170</td>
<td>170</td>
<td>168</td>
<td>168</td>
<td>168</td>
<td>165</td>
</tr>
<tr>
<td>5,000 ft</td>
<td>PS:</td>
<td>2</td>
<td>1 3/4</td>
<td>1 3/4</td>
<td>1 3/4</td>
<td>1 1/2</td>
<td>1 1/2</td>
<td>1 1/4</td>
</tr>
<tr>
<td></td>
<td>SJ:</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>JN:</td>
<td>NCYQ</td>
<td>NCYQ</td>
<td>NCYQ</td>
<td>NCYQ</td>
<td>NCYQ</td>
<td>NCYQ</td>
<td>NCYQ</td>
</tr>
<tr>
<td></td>
<td>NC:</td>
<td>4th</td>
<td>3rd</td>
<td>3rd</td>
<td>3rd</td>
<td>2nd</td>
<td>2nd</td>
<td>2nd</td>
</tr>
<tr>
<td></td>
<td>MJ:</td>
<td>175</td>
<td>172</td>
<td>170</td>
<td>170</td>
<td>170</td>
<td>168</td>
<td>168</td>
</tr>
<tr>
<td>4,999 ft</td>
<td>PS:</td>
<td>2</td>
<td>1 3/4</td>
<td>1 3/4</td>
<td>1 3/4</td>
<td>1 1/2</td>
<td>1 1/2</td>
<td>1 1/4</td>
</tr>
<tr>
<td></td>
<td>SJ:</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>JN:</td>
<td>NCYQ</td>
<td>NCYQ</td>
<td>NCYQ</td>
<td>NCYQ</td>
<td>NCYQ</td>
<td>NCYQ</td>
<td>NCYQ</td>
</tr>
<tr>
<td></td>
<td>NC:</td>
<td>4th</td>
<td>3rd</td>
<td>3rd</td>
<td>3rd</td>
<td>2nd</td>
<td>2nd</td>
<td>2nd</td>
</tr>
<tr>
<td></td>
<td>MJ:</td>
<td>175</td>
<td>172</td>
<td>170</td>
<td>170</td>
<td>170</td>
<td>168</td>
<td>168</td>
</tr>
<tr>
<td>2,500 ft</td>
<td>PS:</td>
<td>2</td>
<td>1 3/4</td>
<td>1 3/4</td>
<td>1 3/4</td>
<td>1 1/2</td>
<td>1 1/2</td>
<td>1 1/4</td>
</tr>
<tr>
<td></td>
<td>SJ:</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>JN:</td>
<td>NCYQ</td>
<td>NCYQ</td>
<td>NCYQ</td>
<td>NCYQ</td>
<td>NCYQ</td>
<td>NCYQ</td>
<td>NCYQ</td>
</tr>
<tr>
<td></td>
<td>NC:</td>
<td>4th</td>
<td>3rd</td>
<td>3rd</td>
<td>3rd</td>
<td>2nd</td>
<td>2nd</td>
<td>2nd</td>
</tr>
<tr>
<td></td>
<td>MJ:</td>
<td>175</td>
<td>172</td>
<td>170</td>
<td>170</td>
<td>170</td>
<td>168</td>
<td>168</td>
</tr>
<tr>
<td>1,000 ft</td>
<td>PS:</td>
<td>2</td>
<td>1 3/4</td>
<td>1 3/4</td>
<td>1 3/4</td>
<td>1 1/2</td>
<td>1 1/2</td>
<td>1 1/4</td>
</tr>
<tr>
<td></td>
<td>SJ:</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>JN:</td>
<td>NCYQ</td>
<td>NCYQ</td>
<td>NCYQ</td>
<td>NCYQ</td>
<td>NCYQ</td>
<td>NCYQ</td>
<td>NCYQ</td>
</tr>
<tr>
<td></td>
<td>NC:</td>
<td>4th</td>
<td>3rd</td>
<td>3rd</td>
<td>3rd</td>
<td>2nd</td>
<td>2nd</td>
<td>2nd</td>
</tr>
<tr>
<td></td>
<td>MJ:</td>
<td>175</td>
<td>172</td>
<td>170</td>
<td>170</td>
<td>170</td>
<td>168</td>
<td>168</td>
</tr>
<tr>
<td>999 ft</td>
<td>PS:</td>
<td>2</td>
<td>1 3/4</td>
<td>1 3/4</td>
<td>1 3/4</td>
<td>1 1/2</td>
<td>1 1/2</td>
<td>1 1/4</td>
</tr>
<tr>
<td></td>
<td>SJ:</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>JN:</td>
<td>NCYQ</td>
<td>NCYQ</td>
<td>NCYQ</td>
<td>NCYQ</td>
<td>NCYQ</td>
<td>NCYQ</td>
<td>NCYQ</td>
</tr>
<tr>
<td></td>
<td>NC:</td>
<td>4th</td>
<td>3rd</td>
<td>3rd</td>
<td>3rd</td>
<td>2nd</td>
<td>2nd</td>
<td>2nd</td>
</tr>
<tr>
<td></td>
<td>MJ:</td>
<td>175</td>
<td>172</td>
<td>170</td>
<td>170</td>
<td>170</td>
<td>168</td>
<td>168</td>
</tr>
</tbody>
</table>

Legend
PS: Pilot Screw opening from fully seated
SJ: Slow Jet
JN: Jet Needle
NC: Needle Clip position
MJ: Main Jet

Condition | Mixture will be Adjust to Component affected
-----------|------------------|-------------------|
Cold temperature | Lean | Rich | Main jet (jet needle stage)
Warm temperature | Rich | Lean |
Dry air | Lean | Rich |
High humidity | Rich | Lean |
High altitude | Rich | Lean |

All jetting is based on
• Standard jetting
• Unmodified Engine

FAHR. -21° to 0° ~ 0° -1° ~ 20° 19° ~ 40° 39° ~ 60° 59° ~ 80° 79° ~ 100° 99° ~ 120°

STANDARD JETTING

122 Adjustments for Competition
Once you’ve adjusted the carburetor for temperature and altitude, it shouldn’t need major readjustment unless race conditions change drastically. However, there are some unique atmospheric conditions or race day situations that may require additional adjustments. They are as follows.

To prevent engine damage, always adjust the main jet before adjusting the jet needle. Always choose the next richer jet if there is any doubt so there is a margin for safety.

Main Jet • Go richer on the main jet, by one number, when: the track has a very long straightaway or uphill section, a high percentage of sand, or the track is muddy.
• Go leaner on the main jet, by one number, when: it is very humid or raining, or it is hotter than 113 degrees F.

After using the chart, and making any adjustments for special conditions, it shouldn’t be necessary to go more than one jet size richer or leaner to fine tune your CRF. If larger jetting changes are necessary, check for worn crankshaft seals, air leaks, blocked or restricted exhaust or fuel systems, or a dirty air cleaner.

Before adjusting carburetor settings, check the following:
• air cleaner
• air leaks
• float level
• clogged carburetor jets
• spark plug fouling (improper heat range or other cause)
• freshness of fuel
• owner modifications (such as exhaust system, holes in the air box, etc.)
• ignition timing
• compression

If the above check out, then, adjust the carburetor for your specific racing conditions. Engine response and appearance of the firing end of a spark plug are highly indicative of the engine condition.

Refer to the list on page 147 for the optional carburetor parts.

To prevent engine damage, always adjust the main jet before adjusting the jet needle. If there is any doubt — always choose the next richer jet so there is a margin for safety.
Carburetor Adjustments & Tuning Tips

Carburetor Minor Adjustments

The standard carburetor settings are ideal for the following conditions: sea level altitude, and 20°C (68 °F) air temperature. If your conditions are different, you may need to adjust the carburetor settings, using the tuning information on page 122 and 123. Confirm your settings are correct before proceeding.

Minor Adjustments
1. Adjust the carburetor setting using the tuning information on page 122 and 123.
2. When the engine is warm enough to run without the choke, push the choke knob down to its off position.
3. Adjust the pilot screw (1) to obtain the best off-idle performance.
 - If the engine blubbers (rich) exiting a corner, turn the pilot screw clockwise to lean the mixture.
 - If the engine surges (lean) exiting a corner, turn the pilot screw counter clockwise to richen the mixture.

The minimum to maximum range of pilot screw adjustments is 1 to 3 turns out from the lightly seated position. If you exceed 3 turns out, the next smallest slow jet is needed. If you are under 1 turn out, the next larger slow jet is needed.

Adjustment Procedure
1. Turn the pilot screw in until it is lightly seated and record the number of turns. Turn the pilot screw out the same number of turns.
2. Warm up the engine.
3. Adjust the engine idle speed (page 48).
4. Make 2 – 3 laps of a course with the standard setting or corrected jetting (page 122). and spark plug. Note engine acceleration and other engine conditions in relation to throttle opening. Verify carburetion by removing the spark plug and reading its firing end (page 54). It may take more than two or three laps to get a good spark plug reading with a new spark plug.

5. Change carburetor settings or select suitable carburetor jets, taking into consideration the engine conditions and factors for temperature and altitude (page 122).
6. Adjust the pilot screw as required.
7. If you've determined that the main and slow jets must be changed, you must rotate the carburetor and remove the float bowl plug.

WARNING
Gasoline is highly flammable and explosive. You can be burned or seriously injured when handing fuel.
- Stop the engine and keep heat, sparks and flame away.
- Handle fuel only outdoors.
- Wipe up spills immediately.

8. Turn the fuel valve OFF, and disconnect the fuel line from the fuel valve.
9. Loosen the connecting and insulator band screws. Rotate the carburetor.
10. Remove the float bowl plug (2).
11. Change the main jet (3) and slow jet (4) as required.

12. Reinstall the float bowl plug.

13. If you’ve determined that the jet needle or clip position of jet needle must be changed, you must remove the carburetor top.

14. Remove the fuel tank (page 30).

15. Rotate the carburetor to the left and remove the carburetor top bolts (5) and carburetor top (6).

16. Remove the jet needle holder (7), insert the carburetor maintenance tool (8) to the jet needle (9) from the throttle valve (10), and remove it.

17. Change the clip position of jet needle or jet needle as required.

18. Reinstall the jet needle, jet needle holder carburetor top and carburetor top bolts.

19. Install the fuel tank (page 31).

20. Rotate the carburetor and align the lug (11) on the carburetor with the slot (12) on the intake tube.

21. Tighten the connecting and intake tube band screws.

22. Connect the fuel line.

23. Start the engine.
 If the engine idle speed is too high or too low or engine is not idling, adjust the engine idle speed (page 48).

24. Repeat steps 4 – 23 until the engine gives maximum power with the correct spark plug reading. It is always better to jet a little rich than a little lean. It is advisable to record the settings, course conditions, lap times, and climatic and barometric conditions for future reference.
Carburetor Adjustments & Tuning Tips

Spark Plug Reading

Refer to Spark Plug on page 54.

Check any jetting change by reading the spark plug. The following procedure is recommended. You may not get an accurate reading if you simply turn off the engine and pull the plug for inspection.

Use a new spark plug. Inspect the plug before installing it.

NOTICE

Using spark plugs with an improper heat range or incorrect reach can cause engine damage.

Before removing the spark plug, clean the spark plug area thoroughly to prevent dirt from entering the cylinder.

Ride for 10 - 15 minutes before taking a plug reading. A new plug will not color immediately.

To obtain an accurate reading of a new spark plug:

1. Accelerate at full-throttle on a straight.
2. Push the engine stop button and pull the clutch lever in to release the clutch.
3. Coast to a stop.
4. Remove the spark plug.
5. Use a magnifying glass to inspect the spark plug. The porcelain insulator (1) around the center electrode (2) should appear clean and colorless with a gray ring around the center electrode where it exits the porcelain. Metallic specks indicate lean jetting that is removing metal from the piston. Black sooty streaks on the porcelain indicate rich jetting.

NOTICE

Improperly tightened spark plugs can damage the engine. If a plug is too loose, a piston may be damaged. If a plug is too tight, the threads may be damaged.

Spark Plug Coloring Guidelines

<table>
<thead>
<tr>
<th>Condition</th>
<th>Spark Plug Appearance</th>
<th>Mixture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>Dark brown to light tan color with dry electrode</td>
<td>correct</td>
</tr>
<tr>
<td>Overheating (Lean)</td>
<td>Light gray or white color</td>
<td>lean</td>
</tr>
<tr>
<td>Wet (Rich)</td>
<td>Wet or sooty</td>
<td>rich</td>
</tr>
</tbody>
</table>

Remember that in addition to improper jetting:
- A lean condition can be caused by air leaks in the inlet tract or exhaust system, the passage of too much air because of the use of the wrong air cleaner, use of a less-restrictive aftermarket exhaust system, or a hole or holes (deliberate or unintentional) in the air box.
- A rich condition can be caused by a plugged or dirty air cleaner, use of a more-restrictive aftermarket exhaust system, a clogged spark arrester, or excessive oil on the air cleaner. Excessive smoking will occur.
The following suggestions may improve a specific concern. Subtle changes in overall handling may also be noted.

Rear End

If you have a problem with rear wheel traction, raise the rear end of your motorcycle by increasing the rear spring pre-load. Instead of running 3.9 in (100 mm) of sag, you can run 3.5 in (90 mm) so the rear of the bike will sit a little higher. This should produce more traction because of the change to the swingarm and the location of your motorcycle’s center of gravity.

If you have a problem with the steering head shaking when you use the front brake hard or if your motorcycle wants to turn too quickly, lower the rear of the motorcycle by reducing the rear spring pre-load. This will increase fork rake and trail and should improve stability in a straight line. The effective suspension travel will be transferred toward the firmer end of wheel travel.

Keep the race sag adjustment (page 109) in the 3.5 - 3.9 in (90 – 100 mm) range.

Fork Height/Angle

The position of the fork tubes in the clamps is not adjustable. Align the groove in the outer tube with the top surface of the upper fork clamp. If you install the optional 20 inch wheel, align the top of the fork tube with the top of the upper fork clamp.

Standard Position

The standard position (1) aligns the index groove (2) with the top of the upper clamp (3).

Standard Position For Optional Front Wheel

If you install the optional 20 inch wheel, align the top of the fork tube (5) (not the top of the fork cap) with the top of the upper fork clamp (6).

Wheelbase

Adjusting your CRF’s wheelbase can offer subtle changes in overall handling. You may adjust wheelbase by adding or removing links on the drive chain. If you change the wheelbase, be sure to re-check race sag and adjust, if necessary.

In the past, a general rule was lengthen the wheelbase to add straight line stability, shorten the wheelbase to improve turning. However, we suggest you do not lengthen the wheelbase of your CRF unless you are racing on a track with more fast sections than normal.

As a general recommendation, keep the wheelbase as short as possible. This positions the wheels closer together, improves turning response, increase weighting (traction) on the rear wheel, and lightens weighting on the front wheel.

With your CRF, you will probably find that the standard setting or a shorter wheelbase will offer more overall benefits.
Gearing

You can “adjust” the power delivery of the standard engine to suit track conditions by changing gearing. This allows you to utilize a different portion of the engine’s power range at a given throttle setting. New gearing may provide the change you are looking for without the need to consider further modifications.

The portion of your engine’s power range you use can be adjusted by changing the final drive ratio with different sized rear sprockets. Gearing changes allow you to more closely match the type of terrain and the available traction. Normally, a change of one tooth on the rear sprocket will be sufficient.

There is a choice of both higher and lower final drive ratios with two optional aluminum driven sprockets. For muddy or sandy courses, there is a more durable steel driven sprocket with the standard number of teeth. Like the optional springs, these sprockets are listed in the Optional Parts List section of this manual.

Unless you have the required mechanical knowhow, tools, and an official Honda Service Manual, sprocket changing should be done by your Honda dealer.

Higher Gearing (less rear sprocket teeth)
- increases top speed in each gear (provided the engine will pull the higher gearing)
- reduces frequency of shifting (wider gear ratios)
- reduces engine rpm at a given throttle setting or ground speed (which may allow better rear wheel traction on slippery or loose terrain)

However:
- the engine may not pull the higher gearing
- the spacing between gears may be too wide
- engine rpm may be too low

Lower Gearing (more rear sprocket teeth)
- decrease top speed in each gear
- increases frequency of shifting (narrower gear ratios)
- increases engine rpm at a given throttle setting or ground speed (which may provide more power-to-the-ground on good traction surfaces)

However:
- spacing between gears may be too narrow
- engine rpm may be too high

Some tracks may be watered heavily prior to the first race, then lightly or not at all during the day. This results in a track surface that is slippery during the first few races, then changes from good to great and back to good and possibly ends the day with a slick rock-hard consistency. Ideally, your gearing should be adjusted to suit all these conditions.

- Wet and slippery or sandy conditions: use a higher gear (less teeth) to keep engine rpm down, and avoid unwanted wheelspin. The engine may bog in certain corners so you’ll need to slip the clutch to compensate; downshifting may be too drastic a change in speed.
- Average conditions: use the standard sprocket.
- Hard (but not slippery) track conditions: use lower gearing (more teeth) to keep the engine rpm high where the engine produces the most power. This may require an extra upshift on certain sections or perhaps you can just rev it out a bit longer.

For tight tracks, consider lower gearing to avoid having to slip the clutch frequently. Repeated fanning or pulling of the clutch lever in a turn to raise engine rpm may eventually damage the clutch system.

A gearing change may help for riding in sand, where you want to keep the front end light so it can float from the peak of one sand whoop to the next. Generally, with higher gearing, it is easier to maintain that perfect attitude (maximum rear wheel traction and a light front end) because you remain in the powerband longer in each gear. The higher gearing allows you to steer more efficiently with throttle control and body English.

If you are riding a track with sections where you choose to over-rev the engine temporarily rather than shifting up, higher gearing might help.

Sometimes you have to sacrifice performance on one section of the track to gain a better overall time. Your goal is the fastest overall lap time, even if the cost is some sections where the gearing feels wrong.

If you decide to try a gearing change, have someone check your times with a stopwatch (before and after the change) to get an accurate appraisal of the change. “Seat-of-the-pants” feelings can’t be trusted. Eliminating wheelspin with a gearing change can make you feel like you’re going slower when, in reality, you’ve decreased your time by increasing your speed with better traction.

These gearing recommendations should be evaluated by considering your ability, your riding style, and the track.
Choosing the correct tire tread pattern and rubber compound can affect your placing in competition. The tires on your CRF offer a “happy medium” for the variety of soil conditions the majority of riders are likely to encounter.

Experienced competitors often switch to tires developed for specific terrain conditions. If you do switch, stay with the factory recommended sizes. Other tires may affect handling or acceleration.

Be aware that tire sizes (width and aspect ratio) do vary from manufacturer to manufacturer or even among tires made by the same manufacturer. Variations in tires, especially the sidewall profile, can change the attitude of your CRF and its handling. Tire variations that raise or lower the rear of your CRF have a more significant effect on handling than variations in front tires which, generally, don’t vary as much. Often, you can see or feel the change in tire size. Another way to check is to measure the rolling circumference of the old and new tires. A higher profile tire will have a larger rolling circumference.

If you do switch to tires designed for special terrain use, remember they will be less acceptable in other circumstances. For example, an aggressive mud tire will give excellent grip on wet, loamy terrain, but less impressive grip on a hard surface.

If you choose a tire with a sticky compound for added traction, remember that it may transfer additional loads to the transmission because it grips so well, especially when riding in situations that normally place unusual demands on the transmission.

Complete consumer information can be obtained from the various tire manufacturer representatives and dealers.

Some general recommendations for specific terrain follow:

Hard, Slick Soil
Use tires with many relatively short knobs that are close together in order to obtain the largest possible contact patch on the surface. The rubber compound needs to be softer for hard ground in order to hook up, but not so soft that the knobs roll over easily and affect holding a straight line. These tires tend to wear more quickly than standard tires because of the combination of soft rubber and hard terrain.

Muddy Soil
Use a more open tread pattern to avoid clogging. For these conditions, the relatively long knobs will probably be made from a harder rubber compound to reduce any tendency to bend back under acceleration or wear quickly.

Loose, Sandy Soil
Use a tire that is similar in construction to those needed for tacky soil and mud, but with a few more knobs.
Personal Fit Adjustments

The following suggestions may make your ride both more comfortable and more responsive to your control input.

Control Positioning

- Position the control levers so that you can use them comfortably when seated and standing.
- Adjust the mounting bolt torque of the clutch and brake lever assemblies so that they can rotate on the handlebar in a fall. If an assembly does not rotate, it may bend or break a control lever. Make sure that the bolts are torqued securely enough to prevent slippage during normal operation.

Apply Honda Thread Lock or an equivalent to the threads of these bolts prior to adjustment to help ensure the correct torque is retained. Tighten the top bolts first.

Handlebar Position, Width & Shape

- Position the handlebar so that both gripping the bar and operating the controls is comfortable while both seated and standing, while riding straight ahead and turning. Tighten the forward bolts first.
- The handlebar position may be moved rearward either 3 mm (using optional handlebar lower holders) or 6 mm (by rotating the standard holders 180 degrees). Refer to the Service Manual for installation instructions. Be sure to check control cable and wiring harness routing after the adjustment.
- Chamfer the edges to remove burrs and other irregularities or roughness after sawing the handlebar.
- An alternate handlebar shape, through varying rise or rearward sweep dimensions, will provide further adjustment to riding position and may better suit your particular body size or riding style. Each of the ergonomic dimensions of the machine were determined to suit the greatest possible number of riders based on an average size rider.

- Position the shift lever and brake pedal so they are close to your boot for rapid access, but not so close that either is depressed when sitting or standing comfortably on your CRF.
- Handlebar width can be trimmed with a hacksaw to better suit your particular shoulder width and riding preference. Think this through carefully and cut off just a small amount at a time from both sides equally. It is obviously much easier to make the handlebar narrower than it is to add material.

As an alternative, consider wrapping the handlebar area under the control assemblies with teflon tape. Then tighten the assemblies to their normal torque. Upon impact, the fully-tightened assemblies should rotate on the Teflon tape.
Here's helpful advice on how to transport and store your Honda, as well as two troubleshooting flow charts.

Transporting Your Motorcycle132
Storing Your Honda..133
You & the Environment134
Troubleshooting..135
Transferring Your Motorcycle

If you use a truck or motorcycle trailer to transport your Honda, we recommend that you follow these guidelines:

• Use a loading ramp.
• Make sure the fuel valve is off.
• Secure the motorcycle in an upright position, using motorcycle tie-down straps. Avoid using rope, which can loosen and allow the motorcycle to fall over.

To secure your CRF, brace the front wheel against the front of the truck bed or trailer rail. Attach the lower ends of two straps to the tie-down hooks on your vehicle. Attach the upper ends of the straps to the handlebar (one on the right side, the other on the left), close to the fork.

Check that the tie-down straps do not contact any control cables or electrical wiring.

Tighten both straps until the front suspension is compressed about half-way. Too much pressure is unnecessary and could damage the fork seals.

Use another tie-down strap to keep the rear of the motorcycle from moving.

We recommend that you do not transport your CRF on its side. This can damage the motorcycle, and leaking gasoline could be a hazard.
If you won’t be riding for an extended period, such as during the winter, thoroughly inspect your Honda and correct any problem before storing it. That way, needed repairs won’t be forgotten and it will be easier to get your CRF running again.

To reduce or prevent deterioration that can occur during storage, also follow the following procedures.

Preparation for Storage

1. Completely clean all parts of your CRF. If your CRF has been exposed to sea air or salt water, wash it down with fresh water and wipe dry.
2. Change the engine oil and filter (page 37).
3. Replace the transmission oil (page 40).
4. Drain the fuel tank and carburetor into an approved gasoline container.
 - Turn the fuel valve OFF and remove the carburetor drain bolt. Drain gasoline into an approved container. Reinstall the drain bolt.
 - **WARNING**
 - Gasoline is highly flammable and explosive. You can be burned or seriously injured when handling fuel.
 - • Stop the engine and keep heat, sparks and flame away.
 - • Handle fuel only outdoors.
 - • Wipe up spills immediately.
5. Remove the radiator cap and coolant drain bolt (1) at the water pump (2) to drain coolant. After the coolant has been completely drained, ensure that the drain bolt sealing washer is in good condition and reinstall the drain bolt and radiator cap.
6. Lubricate the drive chain.
7. Remove the spark plug and pour a tablespoon (0.51 - 0.68 US oz; 15 - 20 cm³) of clean engine oil into the cylinder. With the spark plug grounded or the engine stop button pressed in, crank the engine several times to distribute the oil, then reinstall the spark plug.
8. Inflate the tires to their recommended pressures.
9. Place your CRF on the optional work-stand or equivalent to raise both tires off the ground.
10. Stuff a rag into the muffler outlet. Then tie a plastic bag over the end of the muffler to prevent moisture from entering.
11. Store your CRF in an unheated area, free of dampness, away from sunlight, with a minimum of daily temperature variation.
12. Cover your CRF with a porous material. Avoid using plastic or similar non-breathing, coated materials that restrict air flow and allow heat and moisture to accumulate.

Removal from Storage

1. Uncover and clean your CRF.
2. Uncover the end of the muffler and remove the rag from the muffler outlet.
3. Fill the fuel tank with recommended fuel (page 34).
4. Pour a fresh recommended coolant mixture (page 41) slowly into the radiator filler hole up to the filler neck.
 - Capacity:
 - 1.06 US qt (1.00 l) at disassembly
 - 0.98 US qt (0.93 l) at draining
 - Lean your CRF slightly right and left several times to bleed trapped air in the cooling system.
 - If the coolant level lowers, add coolant and repeat the above procedure.
 - Install the radiator cap securely.
5. Perform all maintenance checks (page 21).
You & the Environment

Owning and riding a motorcycle can be enjoyable, but you must do your part to protect nature. When you show respect for the land, wildlife, and other people, you also help preserve the sport of off-road riding.

Following are tips on how you can be an environmentally-responsible motorcycle owner.

- **Choose Sensible Cleaners.** Use a biodegradable detergent when you wash your CRF. Avoid aerosol spray cleaners that contain chlorofluor carbons (CFCs) which damage the atmosphere’s protective ozone layer. Don’t throw cleaning solvents away; see the following guidelines for proper disposal.

- **Recycle Wastes.** It’s illegal and thoughtless to put used engine oil in the trash, down a drain, or on the ground. Used oil, gasoline, and cleaning solvents contain poisons that can hurt refuse workers and contaminate our drinking water, lakes, rivers, and oceans.

 Before changing your oil, make sure you have the proper containers. Put oil and other toxic wastes in separate sealed containers and take them to a recycling center. Call your local or state office of public works or environmental services to find a recycling center in your area and get instructions on how to dispose of nonrecyclable wastes.

NOTICE

Improper disposal of drained fluids is harmful to the environment.
The items that are serviceable using this Manual are followed by the page number reference in parenthesis. The items that require use of the Honda Service Manual are followed by an asterisk.

POOR PERFORMANCE AT LOW AND UNSTABLE IDLE SPEED

<table>
<thead>
<tr>
<th>CHECK</th>
<th>POSSIBLE CAUSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Check if air cleaner is over-oiled (P-43)</td>
<td>INCORRECT • Over-oiled air cleaner.</td>
</tr>
<tr>
<td></td>
<td>CORRECT</td>
</tr>
<tr>
<td>2. Check if the intake tube is leaking</td>
<td>LEAKING • Loose insulator clamp • Damaged insulator</td>
</tr>
<tr>
<td></td>
<td>NOT LEAKING</td>
</tr>
<tr>
<td>3. Check carburetor pilot screw adjustment (P-124)</td>
<td>INCORRECT • Fuel-air mixture too lean (Turn the pilot screw out) (P-124)</td>
</tr>
<tr>
<td></td>
<td>• Fuel-air mixture too rich (Turn the pilot screw in) (P-124)</td>
</tr>
<tr>
<td></td>
<td>CORRECT</td>
</tr>
<tr>
<td>4. Check carburetor jets and accelerator pump for clogs</td>
<td>CLOGGED • Contaminants in the fuel • Not cleaned frequently enough (P-117)</td>
</tr>
<tr>
<td></td>
<td>NOT CLOGGED</td>
</tr>
<tr>
<td>5. Try spark test</td>
<td>WAKE OR INTERMITTENT SPARK</td>
</tr>
<tr>
<td></td>
<td>• Faulty, carbon or wet fouled spark plug • Faulty ignition control module* •</td>
</tr>
<tr>
<td></td>
<td>• Faulty alternator* • Faulty ignition coil* • Broken or shorted spark plug</td>
</tr>
<tr>
<td></td>
<td>• Faulty ignition pulse generator**</td>
</tr>
<tr>
<td>6. Check for low compression.</td>
<td>LOW • Ring worn • Cylinder worn or damaged • Piston worn or damaged •</td>
</tr>
<tr>
<td></td>
<td>• Head gasket not sealing</td>
</tr>
<tr>
<td>7. Check for low compression.</td>
<td>LOW • Ring worn • Cylinder worn or damaged • Piston worn or damaged •</td>
</tr>
<tr>
<td></td>
<td>• Head gasket not sealing</td>
</tr>
</tbody>
</table>

POOR PERFORMANCE AT HIGH SPEED

<table>
<thead>
<tr>
<th>CHECK</th>
<th>FUEL FLOW</th>
<th>POSSIBLE CAUSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Disconnect fuel line at carburetor and check for clogging (P-34)</td>
<td>RESTRICTED</td>
<td>• Lack of fuel in tank (P-34) • Clogged fuel line (P-34) • Clogged fuel fill</td>
</tr>
<tr>
<td></td>
<td>UNRESTRICTED</td>
<td>cap breather tube (P-34) • Clogged fuel valve (P-34) • Clogged fuel filter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(P-35) • Faulty ignition control module* • Faulty alternator* • Faulty</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ignition coil* • Broken or shorted spark plug wire. • Faulty ignition pulse</td>
</tr>
<tr>
<td></td>
<td></td>
<td>generator**.</td>
</tr>
<tr>
<td>2. Remove air cleaner (P-43)</td>
<td>DIRTY</td>
<td>• Not cleaned frequently enough (P-43)</td>
</tr>
<tr>
<td>3. Install a larger carburetor main jet (p-124)</td>
<td></td>
<td>• Jet size wrong, reject in the opposite direction (P-124)</td>
</tr>
<tr>
<td>4. Check carburetor jets for clogging</td>
<td></td>
<td>• Contaminants in the fuel</td>
</tr>
<tr>
<td>5. Check valve timing</td>
<td></td>
<td>• Cam sprocket not installed properly</td>
</tr>
<tr>
<td>6. Try spark test</td>
<td>GOOD SPARK</td>
<td>• Faulty, carbon or wet fouled spark plug (P-54) • Faulty ignition control</td>
</tr>
<tr>
<td></td>
<td></td>
<td>module* • Faulty alternator* • Faulty ignition coil* • Broken or shorted spark</td>
</tr>
<tr>
<td></td>
<td></td>
<td>plug wire. • Faulty ignition pulse generator**.</td>
</tr>
<tr>
<td>7. Check for low compression.</td>
<td>LOW</td>
<td>• Ring worn • Cylinder worn or damaged • Piston worn or damaged • Head gasket</td>
</tr>
<tr>
<td></td>
<td></td>
<td>not sealing</td>
</tr>
</tbody>
</table>

AIR FILTER

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>WORSE</th>
<th>• Jet size wrong, reject in the opposite direction (P-124)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>WAKE OR INTERMITTENT SPARK</th>
<th>GOOD SPARK</th>
</tr>
</thead>
</table>

CORRECT
Technical Information

This section contains dimensions, capacities, and other technical data.

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle Identification</td>
<td>138</td>
</tr>
<tr>
<td>Specifications</td>
<td>139</td>
</tr>
<tr>
<td>Torque Specifications</td>
<td>140</td>
</tr>
<tr>
<td>High Altitude Carburetor Adjustment</td>
<td>143</td>
</tr>
<tr>
<td>Oxygenated Fuels</td>
<td>144</td>
</tr>
<tr>
<td>Competition Logbook</td>
<td>145</td>
</tr>
<tr>
<td>Optional Parts List</td>
<td>147</td>
</tr>
<tr>
<td>Spare Parts & Equipment</td>
<td>148</td>
</tr>
<tr>
<td>Wiring Diagram</td>
<td>149</td>
</tr>
</tbody>
</table>
Vehicle Identification

Serial Numbers

The frame, VIN, and engine serial numbers are required when you register your motorcycle. They may also be required when ordering replacement parts. You may record these numbers in the Quick Reference section at the rear of the manual.

The VIN (vehicle identification number) (1) appears on the Safety Certification Label attached to the left side of the frame.

LEFT SIDE

(1) vehicle identification number

The frame number (2) is stamped on the right side of the steering head.

RIGHT SIDE

(2) frame number

The engine number (3) is stamped on the left crankcase.

LEFT SIDE

(3) engine number
Specifications

Drive train
- **Clutch type**: Wet, multi-plate type
- **Transmission**: 5-speed, constant mesh
- **Primary reduction**: 3.166
- **Gear ratio I**: 2.142
- **Gear ratio II**: 1.750
- **Gear ratio III**: 1.450
- **Gear ratio IV**: 1.227
- **Gear ratio V**: 1.041
- **Final reduction**: 3.923
- **Gear shift pattern**: Left foot-operated return system 1-N-2-3-4-5

Engine
- **Type**: Liquid cooled, 4-stroke
- **Cylinder arrangement**: Single 10° inclined from vertical
- **Bore and stroke**: 3.07 x 2.06 in, 78.0 x 52.2 mm
- **Displacement**: 3.07 x 2.06 cu-in, 249.4 cm³
- **Compression ratio**: 12.9 : 1
- **Engine oil capacity**
 - After draining: 0.70 US qt, 660 cm³
 - After draining and oil filter change: 0.73 US qt, 690 cm³
 - After disassembly: 0.90 US qt, 850 cm³
- **Transmission oil capacity**
 - After draining: 0.63 Imp qt, 700 cm³
 - After disassembly: 0.74 US qt, 800 cm³

Frame
- **Type**: Twin tube
- **F. suspension**: Telescopic fork, travel 11.0 in (279 mm), stroke 12.4 in (315 mm)
- **R. suspension**: Pro-link, travel 12.3 in (313 mm)
- **F. tire size, pressure psi (kPa, kgf/cm²)**: 80/100 – 21 51M / 15 (100, 1.0)
- **R. tire size, pressure psi (kPa, kgf/cm²)**: 100/90 – 19 57M / 15 (100, 1.0)
- **F. brake, swept area**: 51.8 in² (334.5 cm²)
- **R. brake, swept area**: 60.6 in² (391.1 cm²)
- **Fuel capacity**: 1.9 US gal, 7.3 liter
- **Caster angle**: 27.5°
- **Trail length**: 4.8 in, 123 mm
- **Fork oil capacity (except fork damper per leg)**: 14.1 US oz, 416 cm³

Carburetor
- **Type**: Piston valve
- **Identification number**: FCR01B
- **Main jet (standard)**: # 172
- **Jet needle (standard)**:NCYQ
- **Needle clip position (standard)**: 3rd groove
- **Slow jet (standard)**: # 42
- **Pilot screw opening**: 1–3/4 turns out
- **Float level**: 0.31 in, 8.0 mm

Technical Information

Overall length: 85.5 in, 2,172 mm
Overall width: 32.6 in, 827 mm
Overall height: 50.3 in, 1,277 mm
Wheelbase: 58.2 in, 1,479 mm
Seat height: 38.0 in, 965 mm
Footpeg height: 17.6 in, 446 mm
Ground clearance: 14.2 in, 361 mm
Dry weight: 204 lbs, 92.7 kg

Item	**English**	**Metric**
Overall length | 85.5 in | 2,172 mm
Overall width | 32.6 in | 827 mm
Overall height | 50.3 in | 1,277 mm
Wheelbase | 58.2 in | 1,479 mm
Seat height | 38.0 in | 965 mm
Footpeg height | 17.6 in | 446 mm
Ground clearance | 14.2 in | 361 mm
Dry weight | 204 lbs | 92.7 kg
Torque Specifications

Nuts, Bolts, Fasteners
Check and tighten nuts, bolts, and fasteners before every outing.

Engine

<table>
<thead>
<tr>
<th>Item</th>
<th>Torque</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGINE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Cylinder head cover</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>2 Exhaust pipe joint nut</td>
<td>15</td>
<td>21</td>
</tr>
<tr>
<td>3 Water pump cover</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>4 Crankshaft hole cap</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>5 Transmission oil check</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>bolt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Clutch cover</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>7 Cylinder bolt</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>8 Oil filter cover</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>9 Cylinder head bolt</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>10 Drive sprocket</td>
<td>23</td>
<td>31</td>
</tr>
</tbody>
</table>
Torque Specifications

<table>
<thead>
<tr>
<th>Frame Item</th>
<th>Torque (lbf•ft / N•m / kgf•m)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Steering stem nut</td>
<td>80 / 108 / 11.0</td>
<td></td>
</tr>
<tr>
<td>2. Fork bridge upper pinch bolts</td>
<td>16 / 22 / 2.2</td>
<td></td>
</tr>
<tr>
<td>3. Fork bridge lower pinch bolts</td>
<td>15 / 20 / 2.0</td>
<td></td>
</tr>
<tr>
<td>4. Handlebar holder bolts</td>
<td>16 / 22 / 2.2</td>
<td></td>
</tr>
<tr>
<td>5. Handlebar holder nuts</td>
<td>33 / 44 / 4.5</td>
<td></td>
</tr>
<tr>
<td>6. Front axle nut</td>
<td>65 / 88 / 9.0</td>
<td></td>
</tr>
<tr>
<td>7. Front axle pinch bolts</td>
<td>15 / 20 / 2.0</td>
<td></td>
</tr>
<tr>
<td>8. Rear axle nut</td>
<td>94 / 128 / 13.0</td>
<td></td>
</tr>
<tr>
<td>9. Chain adjuster lock nuts</td>
<td>20 / 27 / 2.8</td>
<td></td>
</tr>
<tr>
<td>10. Engine mounting bolts</td>
<td>47 / 64 / 6.5</td>
<td></td>
</tr>
<tr>
<td>11. Front engine hanger bracket bolts</td>
<td>47 / 64 / 6.5</td>
<td></td>
</tr>
<tr>
<td>12. Mid engine hanger bracket bolts</td>
<td>47 / 64 / 6.5</td>
<td></td>
</tr>
<tr>
<td>13. Upper engine hanger plate bolts (engine side)</td>
<td>40 / 54 / 5.5</td>
<td>NOTE 1</td>
</tr>
<tr>
<td>(frame side)</td>
<td>25 / 34 / 3.0</td>
<td>NOTE 1</td>
</tr>
<tr>
<td>14. Shock absorber (upper) (lower)</td>
<td>33 / 44 / 4.5</td>
<td>NOTE 1</td>
</tr>
<tr>
<td>15. Swingarm pivot nut</td>
<td>65 / 88 / 9.0</td>
<td>NOTE 1</td>
</tr>
<tr>
<td>16. Fork (fork damper) (fork cap)</td>
<td>25 / 34 / 3.5</td>
<td>NOTE 1</td>
</tr>
<tr>
<td>17. Rear shock arm nuts (swingarm side) (shock link side)</td>
<td>38 / 52 / 5.3</td>
<td>NOTE 1</td>
</tr>
<tr>
<td>18. Rear shock link nuts (Frame side)</td>
<td>39 / 53 / 5.4</td>
<td>NOTE 1</td>
</tr>
<tr>
<td>19. Shock spring lock nut</td>
<td>33 / 44 / 4.5</td>
<td>NOOTE 1</td>
</tr>
<tr>
<td>20. Kickstarter arm bolt</td>
<td>28 / 38 / 3.9</td>
<td>NOOTE 1</td>
</tr>
</tbody>
</table>

Notes:
1. U-nut.
2. UBS nut.
3. Apply oil to the threads and flange surface.
4. A lock bolt.
Torque Specifications

Frame

<table>
<thead>
<tr>
<th>Item</th>
<th>Torque</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRAME</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21 Front brake master cylinder holder bolts</td>
<td>7</td>
<td>9.9</td>
</tr>
<tr>
<td>22 Brake hose bolts</td>
<td>25</td>
<td>34</td>
</tr>
<tr>
<td>23 Caliper mounting bolts</td>
<td>22</td>
<td>30</td>
</tr>
<tr>
<td>24 Front brake disc nuts</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>25 Rear brake disc nuts</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>26 Brake pedal pivot bolt</td>
<td>23</td>
<td>31</td>
</tr>
<tr>
<td>27 Front spoke</td>
<td>2.8</td>
<td>3.68</td>
</tr>
<tr>
<td>28 Rear spoke</td>
<td>2.8</td>
<td>3.7</td>
</tr>
<tr>
<td>29 Rim locks</td>
<td>9.6</td>
<td>13</td>
</tr>
<tr>
<td>30 Subframe bolts</td>
<td>22</td>
<td>30</td>
</tr>
<tr>
<td>(upper)</td>
<td>36</td>
<td>49</td>
</tr>
<tr>
<td>(lower)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31 Fork center bolt</td>
<td>51</td>
<td>69</td>
</tr>
<tr>
<td>32 Fork center lock nut</td>
<td>16</td>
<td>22</td>
</tr>
<tr>
<td>33 Disc cover bolts</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>34 Fork protector bolts</td>
<td>5.1</td>
<td>7</td>
</tr>
<tr>
<td>35 Muffler mounting bolts</td>
<td>19</td>
<td>26</td>
</tr>
<tr>
<td>(front)</td>
<td>19</td>
<td>26</td>
</tr>
<tr>
<td>(rear)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36 Muffler clamp bolt</td>
<td>15</td>
<td>21</td>
</tr>
<tr>
<td>37 Sprocket nuts</td>
<td>24</td>
<td>32</td>
</tr>
<tr>
<td>38 Seat mounting bolts</td>
<td>19</td>
<td>26</td>
</tr>
<tr>
<td>39 Front brake reservoir cap screws</td>
<td>0.7</td>
<td>1.0</td>
</tr>
<tr>
<td>40 Rear brake reservoir cap bolts</td>
<td>0.7</td>
<td>1.0</td>
</tr>
<tr>
<td>41 Fork air pressure release screw</td>
<td>0.9</td>
<td>1.2</td>
</tr>
</tbody>
</table>

NOTES:
1. U-nut.
2. UBS nut.
3. Apply oil to the threads and flange surface.
4. A lock bolt.
Technical Information

High Altitude Carburetor Adjustment

When operating this motorcycle at high altitude, the air-fuel mixture becomes overly rich.

Above 6,500 feet (2,000 m), driveability and performance may be reduced and fuel consumption increased. The carburetor can be modified to compensate for this high altitude richness.

However, the carburetor must be returned to standard factory specifications when lower altitude riding is desired. See your Honda dealer for high altitude modification.

NOTICE

Sustained operation at altitudes below 5,000 feet (1,500 m) with high altitude carburetor modifications may cause engine overheating and damage.
Oxygenated Fuels

Some conventional gasolines are being blended with alcohol or an ether compound. These gasolines are collectively referred to as oxygenated fuels. To meet clean air standards, some areas of the United States and Canada use oxygenated fuels to help reduce emissions.

If you use an oxygenated fuel, be sure it is unleaded and meets the minimum octane rating requirement.

Before using an oxygenated fuel, try to confirm the fuel’s contents. Some states/provinces require this information to be posted on the pump.

The following are the EPA-approved percentages of oxygenates:

ETHANOL (ethyl or grain alcohol) 10% by Volume
You may use gasoline containing up to 10% ethanol by volume. Gasoline containing ethanol may be marketed under the name “Gasohol”.

MTBE (Methyl Tertiary Butyl Ether) 15% by Volume
You may use gasoline containing up to 15% MTBE by volume.

METHANOL (methyl or wood alcohol) 5% by Volume
You may use gasoline containing methanol containing up to 15% methanol by volume as long as it contains cosolvents and corrosion inhibitors to protect the fuel system. Gasoline containing more than 5% methanol by volume may cause starting and/or performance problems. It may also damage metal, rubber, and plastic parts of your fuel system.

If you notice any undesirable operating symptoms, try another service station or switch to another brand of gasoline.

Fuel system damage or performance problems resulting from the use of an oxygenated fuel containing more than the percentages of oxygenates mentioned above are not covered under warranty.

Oxygenated fuels can damage paint and plastic. Be careful not to spill fuel when filling the fuel tank. Wipe up any spills immediately.

NOTICE

Oxygenated fuels can damage paint and plastic.
Any serious competition effort relies heavily on the knowledge gained and compiled from previous racing events. The best way to organize the many bits of information is to record them in a logbook.

Your logbook can include such information as suspension adjustments, carburetor adjustments, gearing, and tire selection. This detailed information, along with your comments, can prove valuable when you compete at the same track or on similar terrain.

Your logbook can also tell you when maintenance was performed and when it will be necessary again. Your logbook also lets you record any repairs and lets you keep track of the running time on the engine and suspension components.

If you choose to sell your CRF, the accurate maintenance records in your logbook might be the deciding deal-maker for a potential buyer.

Consider using different color pens or pencils to record important information on specific subjects. For example, record results in black, jetting changes in red, suspension/chassis settings in blue, and gearing selections in green. Color codes will help you identify the information you want with a glance.

Tuning & Adjustment Records
Keep track of the settings and adjustments that worked best at a particular location. These items include:
- basic track conditions, altitude, and temperature
- carburetion changes
- suspension settings
- chassis adjustments tested and selected
- gearing
- tire selection
- air pressure

Competition Records
- your placings
- thoughts to improve performance next time: both yours and your motorcycle’s
- strategy notes

Maintenance Records
- regular interval maintenance
- repairs
- running time on engine
- running time on suspension components

Timekeeping
This Manual lists maintenance intervals for every-so-many races or every-so-many hours of running.

Because all races are not the same, the most effective way to schedule maintenance is by the hours you have run your CRF.

An official “guestimate” is close enough for our timekeeping purposes. You may choose to record your time the same way aircraft operators do (but without the benefit of an electrical hourmeter). All running time is broken down into hours and tenths of an hour (each six minutes represents one tenth of an hour).

Racing Records
Information worth recording for this section of your logbook may include:
- Your placing in each moto and overall finishing position.
- Thoughts on what you could do to improve your performance next time.
- Notes on any patterns noted in choice of starting gate positions or in riding portions of the course as the day progressed that may prove helpful in future events.
- Any places on the course where you chose the wrong line and were passed too easily.
- Notes on strategy used by your competition or by riders in another event that are worth remembering.

Maintenance Records
Regular maintenance items you’ll want to record in your logbook should include:
- Dates and results of cylinder, piston and ring examinations
- Patterns for frequency of need for decarbonization with a particular oil
- When you last performed shock linkage and swingarm pivot bearing maintenance
- Engine, transmission, and suspension oil changes
- chain, sprocket, chain guide and slider replacements
- coolant changes and related component replacements
- Spark plug, brake pad and control cable replacements

In addition, you should record any irregularities noted in component wear so you’ll remember to keep a close eye on these areas in the future.
Competition Logbook

<table>
<thead>
<tr>
<th>Date</th>
<th>Running Time</th>
<th>Location/Event</th>
<th>Comments (Jetting, Suspension Settings, Gearing, Chassis Adjustments, Maintenance Performed, etc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Make several photocopies of this page for future use)
These parts and tools may be ordered from your authorized Honda dealer.

<table>
<thead>
<tr>
<th>CARBURETOR</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main jet (Standard: #172)</td>
<td>#162 – #182 (in increments of 2 or 3)</td>
</tr>
<tr>
<td>Slow jet (Standard: #42)</td>
<td>#38 – #48 (in increments of 2 or 3)</td>
</tr>
<tr>
<td>Jet Needles</td>
<td>Standard needle: NCYQ</td>
</tr>
<tr>
<td>Straight diameter: Ø2.745 mm</td>
<td>Jet needle number (standard series)</td>
</tr>
<tr>
<td></td>
<td>Jet needle number (1/2 clip position leaner than standard series. leaner only at 1/8 to 3/4 throttle)</td>
</tr>
<tr>
<td></td>
<td>58.96 mm</td>
</tr>
<tr>
<td></td>
<td>59.41 mm</td>
</tr>
<tr>
<td></td>
<td>Straight diameter (2.745 mm)</td>
</tr>
<tr>
<td>NCYN</td>
<td>Ø2.725 mm</td>
</tr>
<tr>
<td>NCYP</td>
<td>Ø2.735 mm</td>
</tr>
<tr>
<td>NCYQ</td>
<td>Ø2.745 mm</td>
</tr>
<tr>
<td>NCRY</td>
<td>Ø2.755 mm</td>
</tr>
<tr>
<td>NCYS</td>
<td>Ø2.765 mm</td>
</tr>
<tr>
<td>Technical Information 147</td>
<td></td>
</tr>
</tbody>
</table>

FRAME

<table>
<thead>
<tr>
<th>Driven sprocket</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>51 Teeth, Aluminum.</td>
</tr>
<tr>
<td>Optional</td>
<td>50 Teeth, Aluminum</td>
</tr>
<tr>
<td>Optional</td>
<td>52 Teeth, Aluminum</td>
</tr>
<tr>
<td>Handlebar lower holder</td>
<td>Standard</td>
</tr>
<tr>
<td>Offset</td>
<td>3 mm offset</td>
</tr>
<tr>
<td>Optional</td>
<td>no offset</td>
</tr>
<tr>
<td>Front wheel Standard</td>
<td>21 inch Fork height: 0.3 in (7.0 mm) (align the index groove with the top of the upper clamp)</td>
</tr>
<tr>
<td>Optional</td>
<td>20 inch wheel assembly (except brake disk) tire tube tire flap rim lock (bead stopper) front tire (90/100-20, 90/100-20 M/C) Fork height: 0 in (0 mm) (align the top of the fork tube with the top of the upper clamp)</td>
</tr>
</tbody>
</table>

TOOLS

<table>
<thead>
<tr>
<th>Pin spanner A</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>To adjust spring preload. (two spanners required)</td>
<td></td>
</tr>
<tr>
<td>Workstand</td>
<td>For maintenance</td>
</tr>
</tbody>
</table>

FRAME

<table>
<thead>
<tr>
<th>Shock spring Standard</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>296.8 lbf/in (5.30 kgf/mm)</td>
<td>No mark (factory products)</td>
</tr>
<tr>
<td>or Blue paint (aftermarket parts)</td>
<td></td>
</tr>
<tr>
<td>Optional Softer</td>
<td>285.6 lbf/in (5.10 kgf/mm)</td>
</tr>
<tr>
<td>Stiffer</td>
<td>308 lbf/in (5.50 kgf/mm)</td>
</tr>
<tr>
<td>Red paint</td>
<td></td>
</tr>
<tr>
<td>319.2 lbf/in (5.70 kgf/mm)</td>
<td></td>
</tr>
<tr>
<td>Pink paint</td>
<td></td>
</tr>
<tr>
<td>Fork spring Standard</td>
<td>25.20 lbf/in (0.45 kgf/mm)</td>
</tr>
<tr>
<td>or No mark (factory products)</td>
<td></td>
</tr>
<tr>
<td>Optional Softer</td>
<td>24.08 lbf/in (0.43 kgf/mm)</td>
</tr>
<tr>
<td>Stiffer</td>
<td>26.32 lbf/in (0.47 kgf/mm)</td>
</tr>
<tr>
<td>1 scribe mark and 3 scribe mark 75 degrees apart</td>
<td></td>
</tr>
</tbody>
</table>

The standard fork spring and shock spring mounted on the motorcycle when it leaves the factory are not marked. Before replacing the springs, be sure to mark them so they can be distinguished from other optional springs.
Spare Parts & Equipment

There are numerous spare parts you can take to an event to help ensure you get in a full day of riding. In addition to the usual nuts and bolts, consider the following:

Spare Parts

<table>
<thead>
<tr>
<th>Spark plugs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air cleaner (clean & oiled, sealed in a plastic bag)</td>
</tr>
<tr>
<td>Optional carburetor jets/needles</td>
</tr>
<tr>
<td>Chain & masterlinks</td>
</tr>
<tr>
<td>Chain guide slider</td>
</tr>
<tr>
<td>Chain rollers</td>
</tr>
<tr>
<td>Inner tubes (front & rear)</td>
</tr>
<tr>
<td>Fenders</td>
</tr>
<tr>
<td>Footpegs</td>
</tr>
<tr>
<td>Front & side number plates</td>
</tr>
<tr>
<td>Handlebar</td>
</tr>
<tr>
<td>Grips</td>
</tr>
<tr>
<td>Levers (brake, clutch & hot start)</td>
</tr>
<tr>
<td>Clutch lever handlebar mount</td>
</tr>
<tr>
<td>Clutch cable</td>
</tr>
<tr>
<td>Hot start cable</td>
</tr>
<tr>
<td>Throttle assembly</td>
</tr>
<tr>
<td>Throttle cable</td>
</tr>
<tr>
<td>Shift lever</td>
</tr>
<tr>
<td>Brake pedal</td>
</tr>
<tr>
<td>Spokes (front & rear, each side)</td>
</tr>
<tr>
<td>Sprockets (larger & smaller than standard, for gearing changes & collision damage replacement)</td>
</tr>
<tr>
<td>Assorted nuts, bolts, washers, screws, cotter pins</td>
</tr>
</tbody>
</table>

Additional Spares

| Front brake assembly |
| Rear brake assembly |
| Wheels & tires (front & rear, mounted) |
| Clutch disc and plates |
| Engine & transmission oil seat |

General Tools

| Sockets (3/8 in drive) |
| Screwdrivers: blade & Phillips No. 1, 2, 3 |
| Wrenches: open end & box |
| Wrenches: hex (Allen) |
| Torque wrench (metric scale, click-stop style) |
| Pliers: standard, needle-nose, channel-lock set |
| Syringe with adjustable stop |
| Tire pressure gauge |
| Tire irons |
| Tire pump or air tank |
| Feeler gauge set |
| Vernier caliper (metric) |
| Pressure/vacuum testing equipment (USA only) |

Honda Special Tools

Any special tools for your motorcycle purchased from your Honda dealer.
- Lock Nut Wrench 07WMA-KZ30100
- Nipple Wrench 07JMA-MR60100
- Nipple Wrench 070MA-KZ30100

Chemical Products

| Pro Honda GN4, HP4 (without molybdenum additives) or HP4M (with molybdenum additives) 4-stroke Oil (Engine Oil) |

Other Products

| Pliers-safety wire |
| Safety wire |
| Mechanic's wire |
| Duct tape |
| Plastic tie-wraps |
| Hose clamps |
| Drop light |
| Electrical tape |
This section contains information about contacting Honda and how to get an official Honda service manual.

<table>
<thead>
<tr>
<th>Authorized Manuals ...152</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contacting Honda...153</td>
</tr>
<tr>
<td>Your Honda Dealer...154</td>
</tr>
<tr>
<td>The Honda Rider’s Club (USA only)155</td>
</tr>
</tbody>
</table>
Authorized Manuals

The Service Manual used by your authorized Honda dealer is available from Helm, Inc.

Also available, but not necessary to service your model is the Honda Common Service Manual which explains theory of operation and basic service information for various systems common to all Honda motorcycles, motor scooters and ATVs.

These Honda manuals are written for the professional technician, but most mechanically-capable owners should find them helpful if they have the proper tools and skills. Special Honda tools are necessary for some procedures.

Order On-Line: www.helminc.com
Order Toll Free: 1-888-CYCLE93 (1-888-292-5393)

Order Toll Free: 1-888-CYCLE93 (1-888-292-5393)

(Note: For Credit Card Orders Only)
Monday - Friday 8:00 AM - 6:00 PM EST

By completing this form you can order the materials desired. You can pay by check or money order, or charge to your credit card. Mail to Helm, Incorporated, at the address shown on this order form.

Canada: See your Honda dealer to order authorized manuals.

<table>
<thead>
<tr>
<th>Publication Item No.</th>
<th>Description</th>
<th>Price Each*</th>
</tr>
</thead>
<tbody>
<tr>
<td>61KRN01</td>
<td>2005 CRF250R Service Manual</td>
<td>$48.00</td>
</tr>
<tr>
<td>61CM002</td>
<td>Common Manual</td>
<td>$48.00</td>
</tr>
<tr>
<td>31KRN610</td>
<td>2005 CRF250R Owner's Manual</td>
<td>$16.00</td>
</tr>
</tbody>
</table>

*Prices are subject to change without notice and without incurring obligation.

Order On-Line: www.helminc.com
Order Toll Free: 1-888-CYCLE93 (1-888-292-5393)

(Note: For Credit Card Orders Only)
Monday - Friday 8:00 AM - 6:00 PM EST

By completing this form you can order the materials desired. You can pay by check or money order, or charge to your credit card. Mail to Helm, Incorporated, at the address shown on this order form.

Canada: See your Honda dealer to order authorized manuals.

<table>
<thead>
<tr>
<th>Publication Item No.</th>
<th>Description</th>
<th>Qty</th>
<th>Price Each*</th>
<th>Total Price</th>
</tr>
</thead>
</table>

*Prices are subject to change without notice and without incurring obligation.

Orders are mailed within 10 days. Please allow adequate time for delivery.

Sub Total
Mich. Purchasers
Add 6% Sales Tax
Calif. Purchasers
Add 8.25% Sales Tax
Handling Charge
Grand Total

NOTE: Dealers and Companies, please provide dealer or company name, and also the name of the person to whose attention the shipment should be sent. For purchases outside U.S.A., please write to the address shown below for a quotation.

Customer Name
Attention
Street Address-No. P.O. Box Number Apt. #
City State Zip Code
Daytime Telephone Number

Check or money order enclosed payable to Helm, Inc. U.S. funds only. Do not send cash.

Check here if your billing address is different from the shipping address shown above.

Account Number
Expiration Date: Mo. Yr

Customer Signature Date

These Publications cannot be returned for credit without receiving advance authorization within 14 days of delivery. On returns, a restocking fee may be applied against the original order.

HELM. P.O. BOX 07280 • DETROIT • MI 48207
Your owner’s manual was written to cover most of the questions you might ask about your Honda. Any questions not answered in the owner’s manual can be answered by your Honda dealer. If he doesn’t have the answer right away, he will get it for you.

If you have a difference of opinion with your dealer, please remember that each dealership is independently owned and operated. That’s why it’s important to work to resolve any differences at the dealership level.

If you wish to comment on your experiences with your Honda or with your dealer, please send your comments to the following address (USA only):

Motorcycle Division, American Honda Motor Co., Inc., P.O. Box 2220, Torrance CA 90509-2220, mailstop: 100-4W-5B, telephone: (310) 532-9811.

Canada: Refer to the warranty booklet that was supplied with your vehicle.

Please include the following information in your letter:

• name, address, and telephone number
• product model, year, and frame/VIN serial number
• date of purchase
• dealer name and address

We will likely ask your Honda dealer to respond, or possibly acknowledge your comments directly.
Your Honda Dealer

Once you purchase your new Honda, get familiar with the organization of your Honda dealer so you can utilize the full range of services available.

The service department is there to perform regular maintenance and unexpected repairs. It has the latest available service information from Honda.

The parts department offers Genuine Honda parts, Pro Honda products, Hondaline accessories (USA only), and Honda accessories and products (Canada only). The same quality that went into your Honda can be found in Genuine Honda replacement parts. You’ll also find comparable quality in the accessories and products available from the parts department.

Your dealer can inform you about competition events in your area. You’ll also find that your dealer is a source of information (USA only) the Honda Rider’s Club of America.

We’re sure you’ll be as pleased with the service your Honda dealer continues to provide after the sale as you are with the quality and dependability of your Honda.
The Honda Rider’s Club (USA only)

One of the best ways to get the most enjoyment from owning and riding your Honda is through the Honda Rider’s Club of America. Your purchase of a new motorcycle, scooter, ATV or PWC from a participating U.S. Honda dealer entitles you to a complimentary one-year membership in the club. There are hundreds of HRCA Chapter sponsoring dealers across the USA with events and activities almost every weekend. Membership benefits include:

• 24-hour, toll-free roadside assistance for your new Honda (includes roadside assistance for your transport vehicle as long as your Honda is aboard or in tow).
• Vehicle transport to the nearest Honda dealer or service center if necessary.
• An exclusive HRCA website complete with access to the official Honda Common Service Manual, contests, insider information and more.
• Reimbursement (up to $75) for Motorcycle Safety Foundation training. Separate free training from the Specialty Vehicle Institute of America for ATV owners.
• One full year of the Honda Red Rider magazine or Honda Red Rider ATV (for ATV purchasers).
• Discounts from HRCA partners for experienced rider courses.
• Discounted vehicle insurance from the HRCA’s insurance partner.
• Racing contingency programs and assistance at selected dual-sport, off-road, and motors events.

Contact your Honda dealer for more information or call: 1 800-847-HRCA or log on to www.hrca.honda.com.
Table of Contents

The following presents the contents of each section of your owner’s manual.

MOTORCYCLE SAFETY
- Important Safety Information
- Important Safety Precautions
- Accessories & Modifications
- Safety Labels

OPERATING CONTROLS
- Component Locations

BEFORE RIDING
- Are You Ready to Ride?
- Is Your Motorcycle Ready to Ride?
- Pre-ride Inspection

BASIC OPERATING INSTRUCTIONS
- Safe Riding Precautions
- Starting & Stopping the Engine
- Preparation
- Starting Procedure
- Flooded Engine
- How to Stop the Engine
- Break-in Guidelines

SERVICING YOUR HONDA
- Before You Service Your Honda
- The Importance of Maintenance
- Maintenance Safety
- Important Safety Precautions
- Maintenance Schedule
- General Competition Maintenance
- Before & After Competition Maintenance
- Between Motos & Practice Maintenance
- After Competition Maintenance

Service Preparations
- Component Locations
- Seat Removal
- Fuel Tank Removal
- Subframe Removal

Service Procedures

Fluids & Filters
- Fuel System
- Engine Oil
- Transmission Oil
- Coolant
- Air Cleaner
- Crankcase Breather

Engine
- Throttle
- Engine Idle Speed
- Clutch System
- Hot Start Lever
- Spark Plug
- Valve Clearance
- Piston/Piston Rings/Piston Pin

Chassis
- Suspension
- Front Suspension Inspection
- Rear Suspension Inspection
- Fork Oil Change
- Brakes
- Wheels
- Tires & Tubes
- Drive Chain
- Exhaust Pipe/Muffler
- Additional Maintenance Procedures
- Appearance Care

ADJUSTMENTS FOR COMPETITION
- Front Suspension Adjustments
- Rear Suspension Adjustments
- Suspension Adjustments for Track Conditions
- Suspension Adjustment Guidelines
- Carburetor Adjustments & Tuning Tips
- Chassis Adjustments
- Gearing
- Tire Selection for Track Conditions
- Personal Fit Adjustments

TIPS
- Transporting Your Motorcycle
- Storing Your Honda
- You & the Environment
- Troubleshooting

TECHNICAL INFORMATION
- Vehicle Identification
- Specifications
- Torque Specifications
- High Altitude Carburetor Adjustment
- Oxygenated Fuels
- Competition Logbook
- Optional Parts List
- Spare Parts & Equipment
- Wiring Diagram

CONSUMER INFORMATION
- Authorized Manuals
- Contacting Honda
- Your Honda Dealer
- The Honda Rider’s Club (USA only)
A
accessories ... 3
adjustments,
altitude and temperature 122
carburetor ... 115
chassis .. 127
engine idle speed 48
for competition ... 93
gearing .. 128
high altitude carburetor 143
personal fit .. 130
suspension, front 94
suspension, rear 107
suspension, track conditions 111
tire selection .. 129
after competition maintenance 26
air cleaner .. 43
air pressure,
front suspension 94
tires .. 81
American Honda, contacting 153
appearance care 91
authorized manuals 152

B
basic operation ... 11
before riding .. 7
between motos & practice maintenance 26
brakes,
fluid level ... 77
lever, front adjustment 76
pad wear ... 79
pedal height .. 76
break-in guidelines 15

capacity, fuel .. 34
carburetor,
adjustment ... 115
circuit functions 117
components ... 115
disassembly/assembly 119
high altitude adjustment 143
idle speed ... 48
minor adjustments 124
care, appearance 91
chain drive ... 83
chassis adjustment for track conditions ... 127
choke knob .. 13
cleaner, air .. 43
cleaning, appearance care 91
clutch system, adjustment 49
consumer information 151
controls, operating 5
component locations, 6, 28
maintenance ... 28
operating controls 6
competition logbook 145
contacting Honda 153
controls, operating 5
coolant .. 41
customer service 153
damping adjustments,
front ... 94
rear .. 108
dealer, your Honda 154
diagram, wiring 149
drive chain .. 83
drive chain .. 83
diagram, wiring 149

D
damping adjustments,
front ... 94
rear .. 108
dealer, your Honda 154
diagram, wiring 149
drive chain .. 83
drive chain .. 83
diagram, wiring 149

E
engine,
flooded .. 13
idle speed ... 48
number ... 138
oil ... 36
pinging ... 34
starting ... 13
stop button .. 14
stopping ... 14
environment, protecting 134

F
filter,
air ... 43
oil ... 37
flooded engine, starting 13
fork,
front suspension adjustment 94
front suspension inspection 71
oil recommendation 73
frame number 138
front brake lever adjustment 76
front suspension maintenance 71
fuel,
line .. 34
filter .. 35
recommendation 34
refueling ... 34
system .. 34
oxygenated .. 144
tank capacity .. 34
valve .. 13
Index

G
- gap, spark plug .. 54
- gasohol .. 144
- gasoline .. 34
- gearing .. 128
- guidelines, suspension adjustment 112

H
- handlebar inspection.. 89
- high altitude carburetor adjustment 143
 - Honda, contacting ... 153
 - Rider’s Club ... 155
 - Service Manual .. 152
 - your dealer .. 154

I
- identification, vehicle...................................... 138
- idle speed, engine... 48
- inspection, pre-ride ... 9

L
- labels, safety .. 4
- locations, component 6, 28
- logbook, competition 145

M
- maintenance, additional procedures 89
 - after competition .. 26
 - before & after competition 26
 - between motos & practice 26
 - general competition 22
 - importance .. 18
 - safety ... 19
 - schedule ... 20
- manual, service ... 152
- modifications .. 3

O
- oil, engine .. 36
- fork .. 73
- transmission .. 39

P
- pads, brake .. 79
- parts, optional .. 147
- personal fit adjustments 130
- pinging, engine .. 34
- plug, spark .. 54
- pre-load, rear suspension 107
- pre-ride inspection ... 9

R
- rear suspension maintenance 72
- Rider’s Club Honda .. 155

S
- safety, important information 2
 - important precautions 2
 - labels ... 4
 - maintenance ... 19
 - riding precautions ... 2
 - schedule, maintenance 20
 - serial numbers .. 138
- service, customer ... 153
 - manuals .. 152
 - spare parts ... 148
 - spark knock ... 34
 - spark plug maintenance 54
 - reading .. 126
 - specifications ... 139
 - spring pre-load, rear suspension 107
- starting, engine .. 13
 - troubleshooting ... 135
- steering stem inspection 89
- stopping engine ... 14
- storage ... 133
- subframe ... 32
Index

Suspension,
 Front .. 71, 94
 Rear .. 72, 107
Suspension adjustment,
 Front .. 94
 Rear .. 107
 For track conditions 111
 Guidelines 112

T
Transmission oil 39
Tuning tips ... 115
Throttle,
 Freeplay ... 46
 Inspection .. 47
Tires,
 Air pressure 81
 Flat .. 81
 Selection ... 129
Tools .. 148
Torque specifications 140
Transporting 132
Troubleshooting 135
Tubes, replacing 81

V
Valve, fuel .. 34
Vehicle identification 138

W
Washing your motorcycle 91
Wheels ... 80
Writing diagram 149
Quick Reference

The following is a brief, but important collection of information you need to know about your Honda. You’ll also find space to record important notes.

How To Avoid Costly Repairs

The engine of your Honda can be the most expensive component to repair. Proper maintenance, especially the use of the recommended fluids and filters, prevents premature wear and damage.

Frequent causes of costly engine repairs are:
- Transmission oil & premix oil: insufficient quantity, improper oil.
- Air cleaner: dirty, leaking because of improper installation (poor seal).

The maintenance schedule (page 21) lists service frequencies for:
- each race or about 2.5 hours,
- every 3 races or about 7.5 hours, and
- every 9 races or about 22.5 hours
- every 12 races or about 30.0 hours

Check the items listed on the Pre-Ride inspection checklist each time before you ride (page 9):

<table>
<thead>
<tr>
<th>Maintenance</th>
<th>The maintenance schedule (page 21) lists service frequencies for:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>each race or about 2.5 hours,</td>
</tr>
<tr>
<td></td>
<td>every 3 races or about 7.5 hours,</td>
</tr>
<tr>
<td></td>
<td>every 9 races or about 22.5 hours,</td>
</tr>
<tr>
<td></td>
<td>every 12 races or about 30.0 hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pre-ride Inspection</th>
<th>Check the items listed on the Pre-Ride inspection checklist each time before you ride (page 9):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel/Capacity</td>
<td>unleaded gasoline, pump octane number of 91 or higher tank: 1.9 US gal (7.3 L)</td>
</tr>
<tr>
<td>Engine oil</td>
<td>Pro Honda GN4 or HP4 (without molybdenum additives) or HP4M (with molybdenum additives) 4-stroke oil, or an equivalent.</td>
</tr>
<tr>
<td>Transmission oil</td>
<td>Pro Honda HP Trans oil, Pro Honda GN4 or HP4 (without molybdenum additives) 4-stroke oil, or an equivalent.</td>
</tr>
<tr>
<td>Tires</td>
<td>Front: 80/100-21 51M, Rear: 100/90-19 57M Type: bias-ply, tube</td>
</tr>
<tr>
<td>Tire Pressure (cold)</td>
<td>Front: 15 psi (100 kPa, 1.0kgf/cm²) Rear: 15 psi (100 kPa, 1.0kgf/cm²)</td>
</tr>
<tr>
<td>Spark Plug</td>
<td>standard: R0409B-8 (NGK) optional: R0409B-9 (NGK)</td>
</tr>
<tr>
<td>Drive Chain</td>
<td>D.I.D. 520DMA2</td>
</tr>
</tbody>
</table>